The Phoenix Mission:

the First Arctic Explorer on Mars

Barry Goldstein Phoenix PM

JPL

Peter Smith Phoenix PI University of Arizona

Surface Operations Team in Tucson

Lunar and Planetary Laboratory

Phoenix Landing Zone on Ice Fields Discovered by Odyssey

Region B, too rocky

Region D, Just right

The Big Questions

What happened to the Martian water?

Phoenix will be the first mission to touch and examine water on Mars

Is there biological potentithe northern polar region Mars?

Three components necessary: Water → Did the ice melt? Food → Nutrients and organics Energy → Solar or chemical

Do the poles indicate glok climate change?

Global climate change is dominated by polar processes

Ancient Mars?

Phoenix Landing Site Is Much Farther North Relative to the Other Landers

Permafrost

Compare to the Earth

- 20-25% of terrestrial environments
- Different geological eras yield different layers of different age, 20,000 to 3 million yrs
- · A selective environment:
 - 1) Long-term freezing
 - 2) Low water activity
 - 3) Back ground ionizing radiation

The Phoenix Bird has Risen

MARS POLAR LANDER: AN EXPEDITION TO THE SOUTH POLAR REGION

EDL Architectural Heritage

	Issue	MPLF RB	'01 RTF	Comments
Α	Continuous Communications During EDL	1	1	EDL Communications is baseline.
в	Add LGA Transmit Antenna (Landed Ops)	2	2	Originally in baseline, removed after significant study (Feb. 2005).
с	lonization Breakdown Tests of MGA / UHF in landed 6 Torr Environment	3		Performed UHF breakdown tests.
D	Conduct End -To-End UHF Verification: to 01 Orbiter and MGS	4		Tests were conducted with ODY and MRO test sets. In addition, MER as a surrogate using CE -505 ran tests with MRO and ODY
E	Satisfactory Propulsion H/W Temps; A. tank outlet & line temps above hydrazine freeze point, B. ensure acceptable op temps for thruster iniet manifolds & catalyst beds, C. monitor propellant valve temps during flight.	5,6,7		Propulsion changes already incorporated into '01 design via RRSs. Additional mitigations include venting of tank pressuring after landing in case of freeze / thaw concern.
F	Limit Propellant Migration between tanks to maintain acceptable levels during All Mission Phases	8	13	Implemented latch valve isolation to assure no migration issues.
G	Perform a high fidelity closed Loop Hot Fire Test of Prop System with at least 3 live engines and flight like plumbing support structure.	9	19	Successful HFTB completed. Models verified.
н	Evaluate Water hammer Effect on thrusters, structures, and controls due to 100% Duty Cycle Thrusters	10	19	Water hammer tests completed. Models verified.
I	Conduct Plume -Soil Interaction Analysis or Test	11	26	Completed and incorporated into all analysis.
J	Ensure compliance with FSW Review and Test Procedures	12		Already part of '01 baseline. Documented in MSP01 Software Development Plan.

	Issue	MPLF RB	'01 RTF	Comments
к	FixKnown Software Problems	13		Completed. Active SPR process in place.
L	Fix Post -Landing Fault Recovery Algorithm/Sequences	14	15	MSP01 fixed these items per SPR FS1898 and FS1886.
м	Validate Lander CG Properties, Ensure Tight Constraints on Mass Properties to Meet CG Offset Requirements	15	13	Significant wet and dry spin testing verified CG properties.
N	Beef Up Propulsion Line Support Structure	16		Support structure beefed up as part of '01 baseline. Additional modifications identified and implemented after HFTB.
0	Perform Heatshield ATLO system first - motion Separation Test	17		Two separation tests were conducted during ATLO.
Р	Ensure Thorough Analysis, Simulation, & Test the control system has adequate authority & stability Margins	18		HFTB, ETL, Flight Software into POST
Q	Resolve Small Forces Discrepancies	19	8, 10	Additional calibrations & Delta DOR is documented in Mission Plan and BRM. Thorough thruster calibration program has been conducted during cruise.
R	Improve TCM 5 Flexibility for improved landing site control	20		Mission Design supports flexibility within landing region. End game strategy for Phoenix significantly robust with full landing site imaging.
s	Modify Radar to Reduce Sensitivity to Slopes	21	16	Upgraded Radar has been developed and extensive EDL tiger team effort retired all know risks buttressed with thorough test program.
т	Review Key EDL Triggers to Improve Robustness	22	15	Conducted EDL subphase reviews focusing on triggers. Modified parachute and touchdown triggers to improve robustness.

	Incure	MDLE	101	Commonto
	1350.6	RB	RTE	comments
U	Confirm Acceptable Probability of Chute	23		Implemented Backshell Avoidance Maneuver (BAM)
	Draping over Lander			
v	Redesign EDL Terminal Descent Nav		3	Accomplished as a result of radar performance Tiger Team effort
	Filters			
w	LGA 4 Pi Steradian X - Band Transmit		4	LGA part of the baseline.
	Capability in Cruise			
v	Steamble X Band MGA for Surface		E	Originally in baseling, removed after significant study Ech. 2005. (Same
^	Operations		5	seitem B)
			-	
Ŷ	Heaters for IMU to Allow Gyrocom pass		6	Deletion of steerable X -Band has removed gyrocompassing from list of
	Repeat			mission childar functions. Now is this only. (Related to item b)
z	Heaters for PIU to Eliminate Time		7	Added heaters to work this issue. Eliminated potential flaw in MFB
	Constraint on Landed Deployments			architecture
ZA	Combined with Q			N/A
ZB	Rework TLM SW to Provide Detailed		9	Rejected; MPL & ODY showed current system is sufficient, payload
	Channelized Instrument TLM.			needs are being met. Not related to EDL success.
zc	Fix Star Camera Stray Light Issue		11	Baseline is different Star Tracker. Same as MRO
70	New Assessments Technology for		40	Assessment and the second of design of and in side does not
20	101		12	require it
ZE	Combined with M			N/A

	Issue	MPLF RB	[.] 01 RTF	Comments
ŹF	Implement Active Hazard Avoidance		14	Evaluation of complexity risk vs. landing site risk resulted in not including in baseline. Mitigated, to some extent, with the extensive coverage of our landing ellipse by HIRISE
ZG	Combined with S			N/A
ZH	Formal FSW IV&V		17	West Virginia IV&V engaged
ZI	Combined with O			N/A
ZJ	Combined with H & G			NA
ΣK	Ensure RF Compatibility between Radar and EDL Comm System		20	Individual component EMI tests conducted, system level test was also conducted and passed.
ZL	Add flight data recorder (black box)		21	Intent covered by EDL comm.
ΣM	Improve Robustness in Gyrocompassing/Lander Attitude Determination Algorithm		22	Deletion of steerable X -Band has removed gyrocompassing from list of mission critical functions. Now isinfo only. (Related to item B)
ZN	Improve Operability of STL via Checkpoint Restart		23	ODY showed current system is sufficient.
20	Replace Command / Seq / Block / Config File FSW Architecture w/ Command / Seq / Parameter Visible to Ground		24	ODY showed current system is sufficient. S/W style concern.
ZP	Reduce Separation Guide Rail Snags		25	01 baseline has no guide rails. Analysis shows robust margins.

Comply

Addressed though separate study

- 24 hours out the S/C is traveling at speed of 6,100 mph relative to Mars. During the course of the day, the speed steadily increases
- Deep inside the Mars gravity well, in the last two hours before entry, speed zooms to ~12,600 mph!!
- Entry is an altitude of ~130 km (80 miles) above the surface.
- Mass at entry is slightly over 600 kg. (1,320 lbs)
- During the eventful/fateful next seven minutes, the EDL system must take four zeros off the vehicle speed to prevent an interplanetary train wreck

EDL: An Intense Seven Minutes

Heat Shield

Parachute

The Ultimate Brake System

Thrusters

Landing Legs

Cruise Stage Separation: 4:24 pm PST

- Seven minutes before entry, the entry vehicle separates from the cruise stage
 - Twelve pyro firings break up six separation nuts

Separation Connector Force Margin

- Vehicle power is now supplied by its internal batteries
- Thirty seconds after separation the entry vehicle conducts an autonomous slew to the entry attitude

Communication now begins with Odyssey and MRO carrier only for the next five minutes and then 8 Kb/s two minutes before entry

Cruise Stage Re-contact!

The Hypersonic Phase

•

Hypersonic Control Instability

- Even though Mars' atmosphere is thin (1% of Earth), we use it in the first 4 minutes of entry to dissipate ~94% of the entry vehicle energy and slow it down from ~13,000 mph to ~1,100 mph.
- As the vehicle blazes through the atmosphere, the surface of the heat shield reaches a peak temperature of 1,400°C (~ 2,600°F).

The Parachute

Parachute Loads

- Still traveling at 1,100 mph but now only 40,000 feet off the surface, a mortar punches through a plate on the back shell, deploying a supersonic chute (Mach 1.5). The timing is controlled by an IMU with a timer as a backup.
- Communication rate to Odyssey and MRO changes to 32 Kb/s.
- It is now ~3 minutes before landing.

Heat Shield Separation

15 seconds after the chute deployment, six pyros cut the heat shield loose and a strong spring action pushes it away.

Landing Radar

Landing Radar → Perfect for F-16's: However.....

- 10 seconds after heat shield jettison, the landing legs deploy
- At ~3 minutes (160s) before landing, the landing radar activates
 - Acquires the altitude information at ~8,000 feet and three axis Doppler at ~6,000 feet above the surface

Lander Separation

 37 seconds before landing and at 3,000 feet above the surface, six pyros ignite three explosive nuts which release the lander from the backshell

The lander is now traveling approximately 120 mph

The lander will freefall for 0.5 seconds before the thrusters are fired

Pulsed Mode Thrusters

Three seconds after separation, and 34 seconds before touchdown, twelve 68 Ib terminal descent thrusters are initiated

 Critical in this time period is interaction between the radar and the ACS system.
 Altitude knowledge error translate to velocity error

 Phoenix is the first lander since Viking to use thrusting for terminal descent

Conducted extensive dynamic validation tests for terminal descent!

- Prior to landing, the vehicle 'pirouettes' to establish an east/west orientation of the solar arrays
- The lander achieves a constant velocity of 5 mph at approximately 100 feet from the surface
- The lander detects the ground with any of three touchdown sensors, terminating the engine thrust
- The legs can compress by 6 inches
- At touchdown, the mass of the vehicle is now 365kg (approximately 800 pounds)

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

	INFO	DATA	PREDICT	COMMENT
То	TD Vv (m/s)	2.40	2.40	(req: 2.4 +/-1)
	TD Hv (m/s)	0.15	0.0	(req: < 1.4)
üch	Tilt (deg, deg)	(0.26, 269.13)	0,0	(rel: vertical, north)
Vopl	Lander Azimuth (deg)	-0.68	Arrays Aligned E-W	Dig Area on North
n	Latitude (deg north)	68.22	68.25	aerocentric
	Longitude (deg east)	234.30	233.38	
Ţ	Chute Deploy (s)	227.85	221.1	(re: entry time)
neli	Lander Sep (s)	404.25	398.4	(re: entry time)
ne	Touchdown (s)	446.25	438.9	(re: entry time)
Su	Error Counts	1 FFTfrz, 1FFTdon, 315 ACPM, 531 Radar Reliable	< 800 Radar Reliable Cnts	All explained/expected
rfac	Spacecraft Mode	Nominal	Nominal	
ю О	Battery SOC	91	>90% @ UHF OFF	> 100% @ CSS
)ps St	Odyssey Status	Nominal	Nominal	Ready for first Overflight
ate	MRO Status	Nominal	Nominal	Ready for first Over flight

We landed 22 km away from the rim!

Family Portrait

The Phoenix Landed Payload

Weather and climate

LIDAR

Surface Stereo Imager

Physical geology

RA Camera Robotic Arm Ice tool, scraper blades MET mast (Temp/Wind)

MECA: microscopy, electrochemistry, conductivity

> Mineralogy/chemistry TEGA: Thermal and Evolved Gas Analyzer

> > Thermal and Electrical conductivity probe

"Holy Cow" Exposed by Rocket Exhaust Under Lander

Panoramic of the Mars Surface

NASA

• 360 degree mosaic with SSI in color

RA workspace

One of our dig trenches

Over 400 images at over 100 positions were combined to make this mosaic panoramic

Phoenix Highlights

Sticky soil refuses to Pass through the screen--4 days of shaking required

Is This an Environment Suitable for Life?

- ✓ Periodic liquid water
 - Minerals in the soil form only in liquid water
 - CaCO₃, or limestone, clay
 - Large variations in the polar tilt changes the climate
- ✓ Nutrients
 - Small amounts of Na, K, Ca, Cl, Mg
- ✓ Energy source
 - Large abundance of perchlorate, CIO₄-
 - Perchlorate-reducing microbes are common on Earth
- ✓ Complex organic molecules
 - Maybe, the science team is analyzing the data now

Phoenix Highlights

Bravely continuing its research as Winter approaches

Q&A

Will Phoenix Have A Mission Life Like the Rovers?

The Sun low on the polar horizon

MER

Science Payload

Why not airbags?

Phoenix

223 Kg (Rvr 173) Rover & Egress Equipment

Effective Landed Mass

Touchdown Components

> Total Landed Mass

Risk-7: Cruise Stage Breakup

	 Risk Description Cruise stage components could potentially impact the aeroshell during or after the Cruise Stage breakup. Cruise Stage has components and assembles with ballistic coefficients greater than the aeroshell Cruise stage ring could also breakup after it has passed the Lander 	 Mitigation Separate Cruise Stage in the sun pointed attitude (~ 60° To Entry Trajectory) Perform a slew maneuver by the Lander after separation Multibody trajectory analysis to characterize minimum separation Cruise Stage breakup analysis to estimate breakup range in trajectory
AA	Minimum separation distance of 300 meters Trajectory analysis indicates very low risk of re-contact	5X5 Mitigated Risk Matrix

Risk-8: Thruster Efficacy Residual Uncertainty in Modeling Knowledge

A A	Risk DescriptionThere is a potential of adverse interaction between the supersonic and hypersonic recirculation flow and the RCS thruster flow• Reduces pitch control authority ~50%• Can cause reversal of Yaw controlPrimary consequence is vehicle control instability in supersonic regime causing excessive AOA for chute deploy	A A A A A	 Mitigation Extensive CFD analysis (including independent models) to identify issue Increased dead-band thresholds for attitude and attitude rate to eliminate thruster firing in the Supersonic and hypersonic regime Extensive POST Analysis to verify performance and characterize AOA at chute deploy Aero database review to establish appropriate uncertainty range Robustness and break it analysis 				ttitude firing in e chute propriate		
	Mitigation Results Very low probability of thruster firing in the	5X5	5 Mitię	gated F	Risk N	Matrix			
	expected EDL dispersions range		5						
	1.5 seconds continuous firing required for control instability	pg	4						
	Acceptable AOA performance at chute	ikliho	3						
N	deploy (>20% margin, 0.1% out of spec)		2						
	Not possible to test verify								
	Large AOA can contribute to the wrist mode risk and also potentially aggravate the radar performance		1	1	2 Con	3 seque	4 ence	\sum_{5}	

Risk-9: Residual Radar/System Risks

 \triangleright

 \geq

 \geq

 \geq

Risk Description Mitigation There is a set of residual radar and radar-**Detailed Characterization and Simulation** \triangleright system anomalies that have a very low 72 flight drops probability of occurrence >1000 EGSE drops 1. Heat shield-induced lock on Barker > 60 hours of field flight tests side lobe of ground **Detailed performance model** 2. Bad locks from noise in Mini Non >100,000 simulations Embedded search Robustness and break it tests 3. Leakage effects Multiple levels of independent reviews \triangleright 4. The radar may lock on its own transmit-receive leakage if it breaks track within certain narrow altitude windows 5X5 Mitigated Risk Matrix **Mitigation Results** 5 Very low probability of occurrence <0.5% (considered conservative by EDL team) 4 Liklihood Not seen in system level simulations 3 Navigation filter can tolerate the one instance seen in flight tests 2

1

3

Consequence

4

2

1

Risk-11: Site Alteration/Interaction

AAA	Risk DescriptionInteraction of the descent thruster plume with the surface is inevitable and not deterministicIt has four classes of potential risksIt has four classes of potential risksIt ack pressure on LanderIt alterationIt alterationIt alterationIt alters cloudIt alters cloudIt alters cloudIt alters of potential risksIt alters of potential riskIt alters of potential risk <t< th=""><th> Mitigation Terminal descent controller is robust to the transient back pressure System can tolerate some level of surface alteration ~ 30 cm deep Orbital GRS indicates that landing region permafrost layer is no more than 10cm below surface Large sample collection area Lander deck is tolerant to large dust buildup Thruster Exhaust Products Were Measured During ATP </th></t<>	 Mitigation Terminal descent controller is robust to the transient back pressure System can tolerate some level of surface alteration ~ 30 cm deep Orbital GRS indicates that landing region permafrost layer is no more than 10cm below surface Large sample collection area Lander deck is tolerant to large dust buildup Thruster Exhaust Products Were Measured During ATP
AAAA	Mitigation ResultsOriginal Viking and 2008 AMESexperiments indicate that large volume oftop soil will be displacedAMES experiments indicate a worst casedeposition on the deck of 3 mm only• Mechanical/thermal is robustViking tests and permafrost depth do notindicate TD risk (pits<10cm)	5X5 Mitigated Risk Matrix