SAMS-II: Decimation of a Project

Tom Sutliff NASA Glenn Research Center Knowledge Sharing February, 2004

Outline

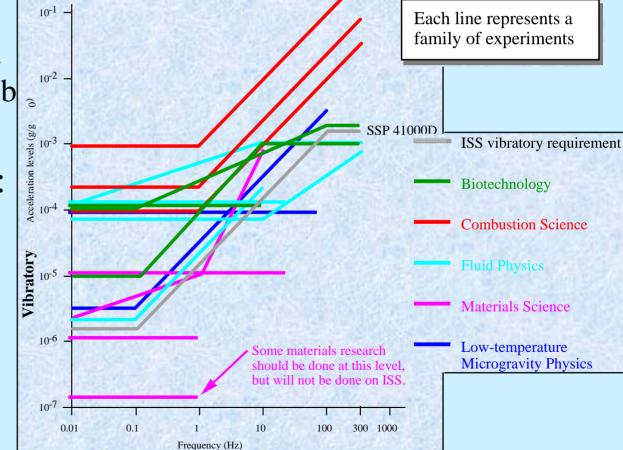
- Project Background
- Realities of being an "ISS project"
- Cuts: The 'Big One'
- Pain, suffering, and ...survival
- A new awakening
- Conclusion

Project Background

Space Acceleration Measurement System-II (a 2nd generation system)

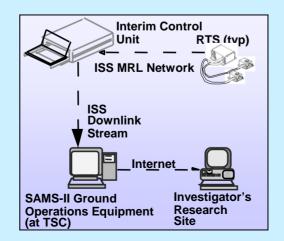
- Measures vibratory acceleration disturbances in support of the Microgravity Research Program research experiments (Code UG)
 - Over a dozen STS and Mir missions were supported with SAMS
- Develop a system for 10+ years of operation on a Space Station (Freedom, Alpha, ISS, ...)

ISS


ISS Research- New Era, New Vehicle

- ISS will provide new opportunities for on-orbit research studies
- Microgravity environment is key component being investigated

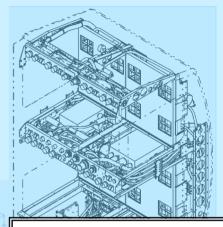
Desired Research Environment


- Vibratory:
 - Ranges from milli-g to sub µg
- Quasi-Steady:
 Below 1 µg

Measure the Environment for Research

• SAMS-II

- A vibratory environment measurement system
 - 0.01 Hz to 300 Hz; 1 µg to 0.1 g
 - Multiple sensors distributed to payloads
 - Centralized control computer
 - Ground data dissemination
 - Data analysis and trending



SAMS-II Deployments

- Control Unit
 - NASA EXPRESS Rack
- Remote Triaxial Sensors
 - EXPRESS Rack shelves
 - Drawers
 - Facilities
 - Locker Payloads

The Customers:

NASA Microgravity Science Disciplines

Other research areas (life science, space products)

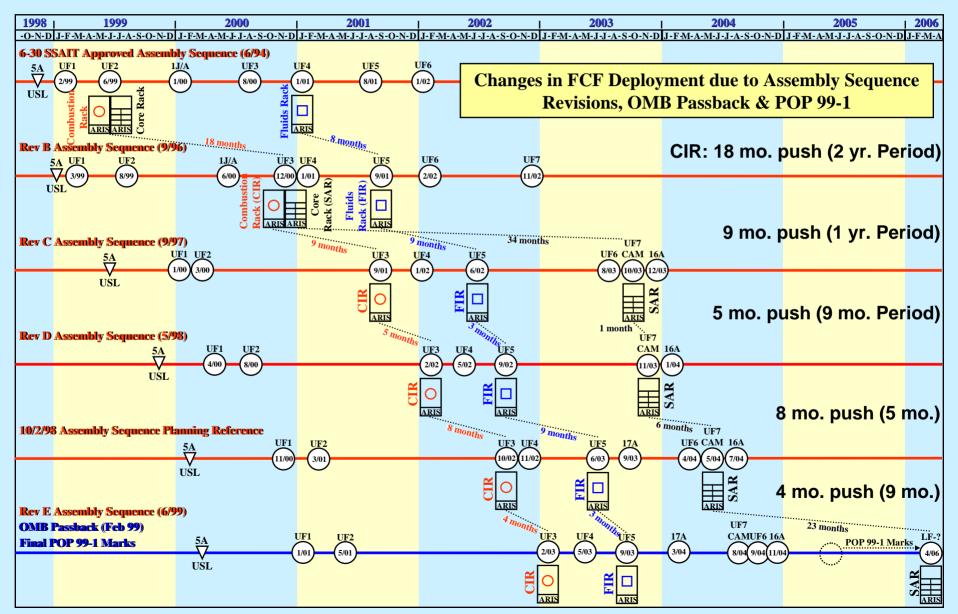
Vehicle dynamicists

Vehicle Maintenance andSustaining Engineering

SAMS for Space Station SAMS-II

- SAMS-II is a modular, distributed architecture acceleration measurement and analysis system
 - Control Unit- data storage and analysis
 - Remote Triaxial Sensors- variable frequency ranges
 - Ground Operations- PI command and control access
- Payloads integrate sensors at experiment location
 - Digital sensors, programmable frequency ranges
- General purpose acceleration measurement system
 - Consistent hardware for multiple increments and multiple experiments
 - Facility Racks, EXPRESS Racks capability
 - Provides on-orbit data analysis capability for experiment decision-making and control
- Milestones
 - First flight Electronics unit delivered 5/99
 - Flight Control Unit delivered 11/99
 - On-orbit Operations begin
 7 / 00

SAMS-II is a versatile, general purpose acceleration measurement system



But I'm getting ahead of myself...

All is well... or is it?

- Space Station development
 - A treacherous path
- Payloads are (were) subservient to the vehicle development
 - Requirements
 - Budgets

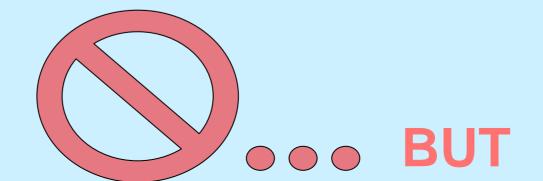
A Typical ISS payload development


SAMS-II Redirection Realities

- ISS-budget driven SAMS-II project constraints
 - traffic model (customers and timing)
 - Budget
 - scope... Realities-->
- ISS Problems (\$500M over budget, facilities delay)
 - SAMS-II budget bar chart
- What it means for SAMS-II ...

(from All-Hands charts on 10/11/96)

Decimate the project

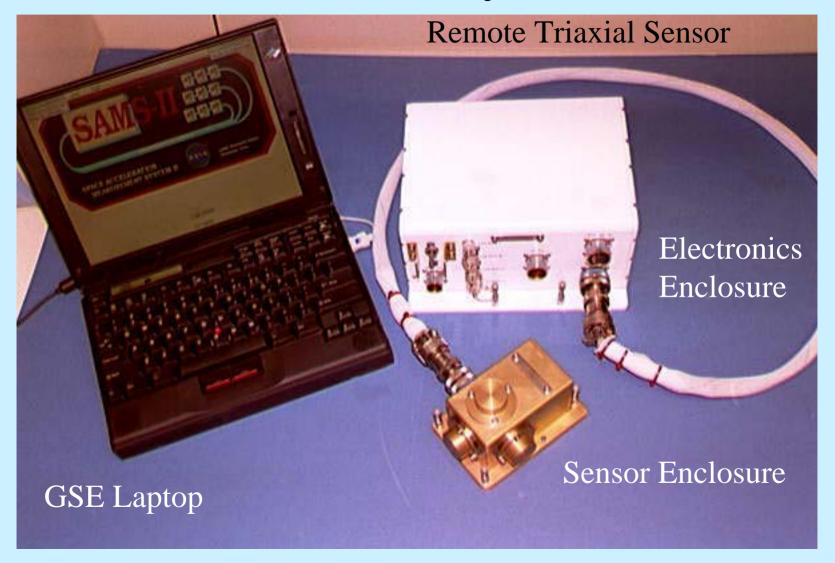

SAMS-II Redirection Realities (10/96) What it means for SAMS-II ...

- CLOSE-OUT ALL NON-RTS RELATED WORK
 - CU redesign efforts to be documented and closed out
 - CU related procurements stopped
 - Q-SICA effort is stopped
 - GOE designs and procurements to be put on hold
 - CU-GSE efforts stopped
 - CU, GOE, CU-GSE Software, RFAs, design put on hold
- EXCEPTIONS:
 - Complete the MSS Thermal POC evaluation
 - Complete the Coldplate fabrication capability development study
 - ISSUES: Long lead VME procurement must be assessed
 - Other?

SAMS-II Redirection Realities (10/96) What it means for SAMS-II ...

• CONTINUE RTS WORK

- Demonstrate the RTS functionality (boot, configure, collect and transmit data) using the Engineering Model hardware RTS
- Develop and test at qualification levels an RTS system
- Develop and test flight RTS systems to support user requirements
- Support flight hardware deliveries to EXPRESS Rack (flight RTS-EEs: 2 at 1/97, 2 at 4/97)
- Develop the support systems later (CU, GOE) that allows usage of the RTS as provided
 - Will require early creation of key functional elements of CU, GOE to ensure adequate checkout of RTS functions



SAMS-II Redirection Realities (10/96) What it means for SAMS-II ...

- OTHER APPROACHES TO BE CONSIDERED BY PROJECT/ BY MANAGEMENT:
 - Eliminate a CU configuration (either Eng. Model or Qualification Unit) to decrease program cost and still maintain a FY01 ship date
 - Redefine SAMS-II operational configuration (eg. a more independently operating RTS capability)
 - Change project operating paradigm (fast-track, different controls and reporting methods, all civil servant implementation team, additional risk acceptance)
- Alternate funding sources- partnering with NASDA, partnering with AMES/Centrifuge project (a sharing of development costs as well as recurring costs for hardware to be provided)

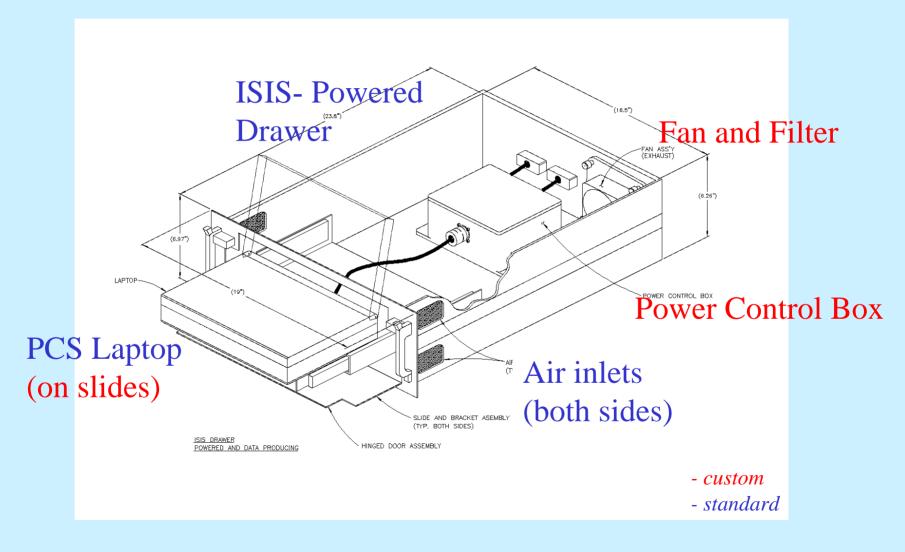
Open to suggestions on creative ideas to save money, decrease complexity, do more with less, accomplish the same functions with less development costs

... A core system

Remote Triaxial Sensor

- Implementation Approach
 - Distributed measurement system (multi-user)
 - Minimize sensor head size (RTS-EE + RTS-SE)
 - Maintain performance
- Status
 - CDR 4/97; Phase 1/2 Safety Review 12/97
 - Qual Unit completed testing 6/98
 - Prepare EE Flight Unit #1 to Ship to EXPRESS

Remote Triaxial Sensor System



GSE / Interim Control Unit

- Implementation Approach
 - Rely on existing ISS Laptop (PCS) hardware heritage
 - Deploy SAMS-II-specific software in Laptop for RTS operations
 - House components in a standard ISIS drawer
- Status
 - Prel. Design Review (engineering model)
 - Flight unit shipment planned for 11/99.

ICU Components

ICU Components

- ISIS Drawer (ISS standard)
- ThinkPad 760XD Laptop (ISS standard)
- Power Control Box (PCB)
- Fans (Drawer & PCB)
- Circuit Breakers
- Designed with Military and Industrial Electronics for Reliability

Interim Control Unit

Remote Triaxial Sensor System

More with Less...

- Upon approval of the approach SAMS-II was solicited to provide support to:
 - First Fluid Physics Experiment (EXP-PCS)
 - A vehicle Risk Mitigation Experiment (ARIS-ICE),
 - The Microgravity Science Glovebox, and
 - General vehicle characterization...
 - And others...

S-II ISS Traffic_Rev_D(5-98)

Acceleration Measurement Program

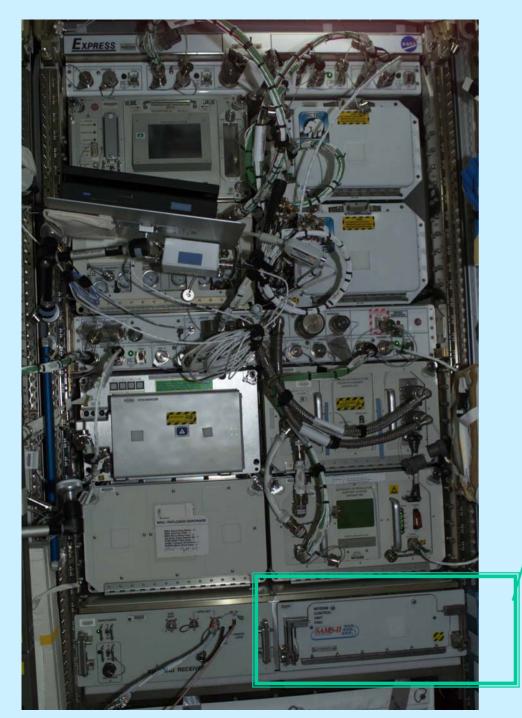
ISS Traffic Model

Current Scope (SAMS-II)

	<u>1E</u>	UF 1 4/00	UF 2 8/00	UF 3 2/02	UF 5 9/02	1E 10/02	17A 11/02	HTV2 2/03	UF 6 8/03	UF 7 10/03	Future
Interim Control Unit Control Unit											
Remote Triaxial Sensors											
EXPRESS Rack	EE SE	(PCS)	(TBD)			(твр	(твр)			
Fluids & Combustion Facility	EE SE										
Material Science Research Facility	EE SE										(7/04)
Glovebox (MSG)	EE SE										
Biotechnology Facility (BTF)	EE SE										
Low Temperature Microgravity Physics Facility (LTMPF)	EE SE										

S-II ISS Traffic_Rev_D(5-98)

Acceleration Measurement Program

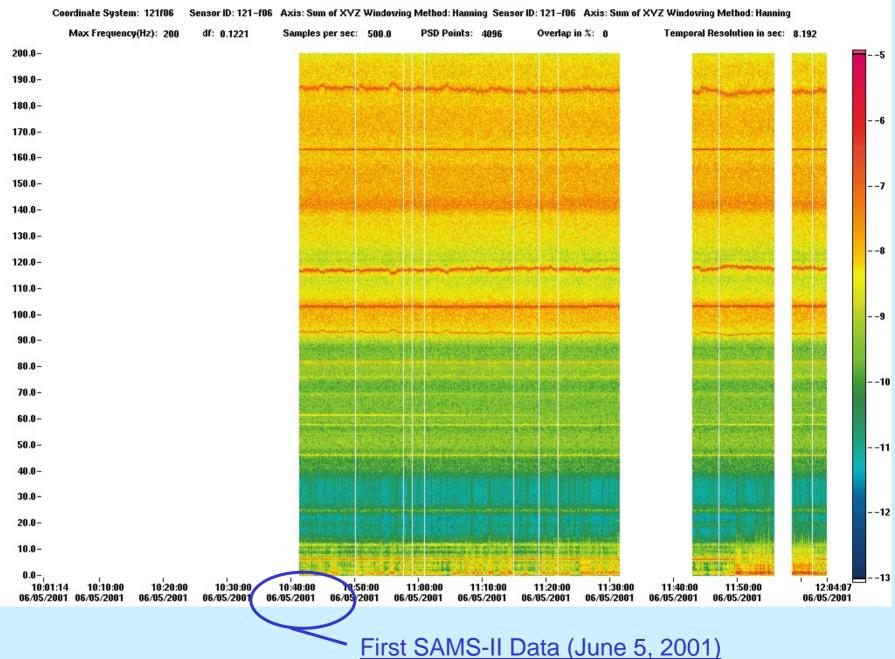

ISS Traffic Model

Added Scope (SAMS-II)

		UF 1 4/00	UF 2 8/00	UF 3 2/02	UF 5 9/02	1E 10/02	17A 11/02	HTV2 2/03	UF 6 8/03	UF 7 10/03	Future
OPPORTUNITIES MAMS											
Remote Triaxial Sensors											
ARIS RME	EE	(2)									
	SE	(3)									
EXPRESS Rack Ground Simulator	EE										
	SE	(2/99)									
Multi Phase Flow and Transport Facility (MPFTF)	EE										
	SE										(2005)
NASDA	EE			(4)							
	SE			(5) (8	-10/01)						


And we did it!

- SAMS-II system elements were successfully launched aboard STS-100 (ISS flight 6A), April, 2001.
- First data was acquired and downlinked on June 5, 2001
- SAMS-II has accumulated over 16,000 hours of on-orbit operational time and data.



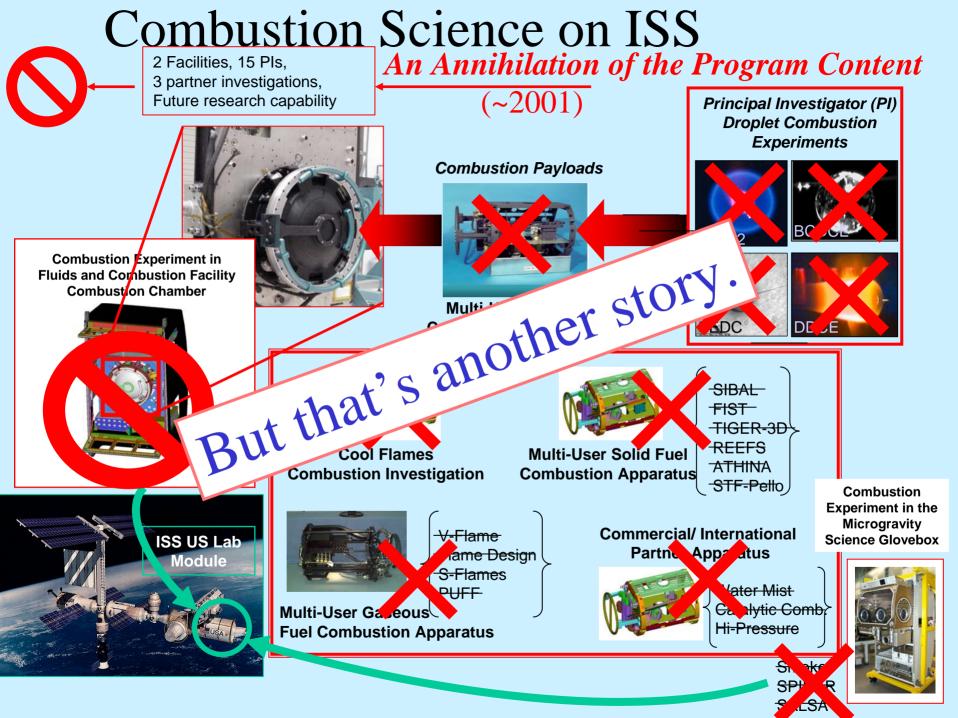
ICU (on orbit, in/EXPRESS 4)

RTS-Drawer (on orbit)

No new data available Tue Jun 5 13:38:33 2001

1st_S-II Data_Graph.jpg

Key Points


- Communicating bad news can be done.
 - Projects and people are resilient.
- Focus on what is still viable.
 - Teams just need a little positive reinforcement to remind them that the glass usually half full.
- Remember that change usually has a positive element, too.
- SAMS-II was destined to be a success.
 - Success comes in many forms.

Epilogue

- And as is typical of success stories, I was promoted.
 - So, on to my next challenge...

Combustion Concernation Constraints (my next challenge)

- Science
 - Fundamental research
- Flight Projects
 - To conduct the investigator's science

Backup Information

SAMS-II: Decimation of a Project

(how to save a project) (and build a team) (and surpass expectations) (and garner new customers)

SAMS-II History

- SAMS-II initiated in 1991
- Requirements gathered from UG disciplines
- Architecture defined CU, multiple RTS

 System Hardware PDR held 11/95
- CU delayed (10/96), ICU concept developed
- RTS proceeding towards multiple deliveries
 RTS CDR held 4/97; status of RFAs
- Operations to begin at 6A (4/00) [rev Rev D]