

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Spacelab, Science, and Human Space Flight – Retrospective Observations

M. Sander May 13, 2009

(With thanks to Tony Freeman / Scott Hensley)

National Aeronautics and Space

- Nixon administration approved Shuttle, but... ۲
- ESA agreed to participate two agendas (sales and experience) •
- Early expectations for : ullet
 - flight rate vs. later realities
 - utilization practices vs. later realities
 - flight program start vs. later realities
- Learning how to use Spacelab ۲
 - Too much, too early? _
 - Finding the balance between force fitting and exploiting
- Finding the balance between protecting the infrastructure and flying ٠ experiments
 - Helping the PI be successful vs. protecting the "system" from the PI
- Funding the infrastructure vs funding the "payoff" ullet

Spacelab in the Smithsonian

- Spaceborne Imaging Radar A (SIR-A) on STS-2 Nov, 1981 •
- SIR-B on STS-41G ۲

National Aeronautics and Space

- Oct, 1984
- SIR-C / X-SAR on STS-59 and STS-68 April/Oct, 1994 ۲
- Shuttle Topography Radar Mission (SRTM) on STS-99 Feb, 2000 •

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Coupled Airborne and Spaceborne Radar Programs

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Shuttle Imaging Radar-A (SIR-A), 1981

Forest cover and geology of Lozere Department, France with Gorges du Tarn. Composite of two X-band images from different seasons.

California

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

SRTM Hardware

SRTM Outboard Antenna Stowed

SRTM Outboard Antenna Partially Deployed

SRTM Outboard Antenna Fully Deployed

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Shuttle Radar Topography Mission (SRTM)

- Mapped 80% of Earth
- 30 m horizontal data points
- 10 m vertical accuracy

SRTM image of Yucatan showing Chicxulub Crater, site of K-T extinction impact

3-dimensional SRTM view of Los Angeles (with Landsat data) showing San Andreas fault

SRTM Outboard Antenna in the Smithsonian

SRTM Global Production

Map showing topographic data generated by the SRTM mission.
1.5 tera points of topographic reference elements

- Early expectations can be misleading ۲
- Those who are successful using the elements of Human Space • Flight Systems:
 - Understand the systems technically and socially
 - Develop systems that: —
 - Are maximally self-reliant
 - Leverage and respect the presence of humans
 - Leverage the capabilities of the HSF transportation Infrastructure
- Exploiting the HSF capabilities requires timing, tenacity and agility •
 - Let the systems mature before dipping in too deeply
 - Most elements are highly schedule and functionally interdependent
- Potential for payoff is huge •