Lunar Prospector: Managing a Very Low Cost Mission

Prof. G. Scott Hubbard,
Department of Aeronautics and Astronautics
Stanford University

NASA Manager of LP from 1995-1998

The PI-Team Masters Forum - 2
April 27, 2010
Mission and Program Goals

• Understand the origin, evolution and resources of the Moon

• Demonstrate “Faster, Better, Cheaper” goals of Discovery Missions
 – LP was the first competitively selected Discovery Mission

• Catalyze planetary exploration via education and outreach programs
Back to the Moon with Lunar Prospector

Stanford University Department of Aeronautics and Astronautics
Back to the Moon with Lunar Prospector
Mission and Metrics Overview

• $62.8M Total Mission Cost (FY96)
 – Phase B study: $2M
 – 5 Instruments/6 experiments: $3.6M
 – Spacecraft and mission analysis: $22.6
 – ELV, translunar stage and adapter: $26M
 – Operations: $4.2M
 – Maximum award fee: $4.4M

• Education and Outreach (example)
 – Innovative Web activities using ARC information technology

• 22 Month development

• 1 year primary mission at 100km circular polar orbit

• 6 month extended mission at 10-30 km polar orbit
Trajectory
Development Approach

• Spacecraft:
 – Simple, spin-stabilized, reliable
 – High heritage instruments, components & subsystems
 – Mix of subsystem and operational redundancy

• Test
 – Rigorous test-as-you-fly program
 – Addressed all spacecraft functions and risk areas
 – No normal project steps were skipped
Mission Operations Approach

• Operations:
 – Operational simplicity combined with planning, staffing and training of all aspects of operations
 – Extensive off-nominal system and mission analysis, contingency procedures development and team training

• ELV:
 – Athena II launch vehicle with commercial ship & shoot processes
 – Rigorous mission success qualification process
Management Challenges

• Manage to cost, yet maximize mission success on a short schedule

• Balance teamwork with NASA accountability

• Develop new management tools without sacrificing prudent process

• Accommodate new roles of PI and Project Manager
LP Management Philosophy

• Freeze project design and develop without deviation
• Minimize staff; place responsibility and accountability on front-line personnel (but maintain a mix of senior and junior staff)
• Maximize science per dollar via clear, firm objectives and metrics
 – Well-defined data return (e.g., global H maps to 50 ppm)
 – < 2 year development
 – $62.8M Total Mission Cost
 – New Education and Outreach mechanisms
Stanford University Department of Aeronautics and Astronautics

Management Organization

Ames Research Ctr: Lunar Prospector Mission
Mission Manager: Scott Hubbard
Deputy Mission Manager: Sylvia Cox

Lockheed/Martin: Lunar Prospector Project
PI: Alan Binder*
Project Manager: Tom Dougherty

Cost Plus Award Fee type contract

Co-Investigators and Instruments

Spacecraft Development at LMMS

Ames LP Team
-Mission/Trajectory Analysis
-Operations/Tracking Support

Launch Vehicle Development at LMA

* Now at Lunar Research Institute

Stanford University Department of Aeronautics and Astronautics
Management Tools

• Balance programmatic oversight with technical insight
 – Simplified reporting and monitoring systems
 – Modified SR & QA surveillance

• Use performance based award fee contract with cost and science incentives
 – Maximum award fee available (15%)
 – 1/2 award fee on Cost; fee reduced dollar for dollar by overruns
 – 1/2 on Science data, but if no science data, all award fee lost

• Fixed price subcontracts

• Rapid movement of LMCO staff on and off project
Insight vs Oversight

• Oversight/ Direct Involvement
 – Proposed Science
 – Top level schedule
 – Total Mission Cost (TMC)
 – Major Reviews (IRR)
 – Athena II first use
 – Tracking/DSN Ops
 – SR & QA plan approval

• Insight/ Vigilance
 – Spacecraft Design Details (e.g.)
 > Spacecraft moment of inertia
 > C&DH breadboard FPGAs
 > Solar cell selection
 > Mast deployment
 > GRS Thermal performance*
 – Subcontract Selection and management
 – Instrument Development
 – SR & QA process monitoring

*Example of parallel analysis

Stanford University Department of Aeronautics and Astronautics
LP Management Approach

- Exploit proximity of PI/Contractor-NASA management to streamline all processes
- Minimize NASA team size but maintain continuity; restrict parallel analysis
- Combine in-depth Independent Readiness Reviews (IRR) with normal prudent project milestone reviews
- Use existing contractor systems wherever possible
Metrics Status (Faster, Better Cheaper)

• Met goal of 22 month development through spacecraft test

• Project completed inside cost box and exceeded performance goals

• Athena II low cost launch vehicle first use successful

• Innovative website received >100M hits and won numerous awards
Neutron Spectrometer Data

- Circular polar orbit ensured high quality data from target polar regions
- Telltale dips in the counts of epithermal neutrons indicate excess hydrogen
- Large amounts of excess hydrogen are likely deposits of cometary water ice

Lunar South Pole

Dips indicate presence of hydrogen = water ice
Lessons Learned Assessment

• Discovery Program experiment and FBC worked, and:
 – Adequate reserves are key for even mature design
 – Personal “team chemistry” is important in small program
 – Risk management, including off-nominal assessment, must be considered continuously throughout program
 – Education and public outreach has become major effort

• Balance of management insight versus oversight must be appropriate for scope of program