
By Jeff Cline

Keys to Software Success

A 1995 Standish Group survey of 365 respondents spanning 8,380 software
applications showed that only 16 percent of software development projects
finished on time and on budget; 31 percent were canceled; and the remaining
53 percent overran costs by an average of 189 percent. Similar surveys predict
that information technology projects are more likely to fail than succeed.

46 | ASK MAGAZINE | STORY

An unpiloted ISS Progress resupply vehicle approaches the
space station, bringing almost two tons of food, fuel, oxygen,

propellant, and supplies for the Expedition 24 crew members.

ASK MAGAZINE | 47

P
h

o
to

 C
re

d
it

: N
A

S
A

Photographed by an STS-131 crew member on Space Shuttle
Discovery, the International Space Station is featured with Earth’s
horizon and the blackness of space as a backdrop.P

h
o

to
 C

re
d

it
: N

A
S

A

For the past decade, a team led and managed by Barrios
Technology, Ltd., at the Johnson Space Center has avoided
the pitfalls associated with software development. In addition
to launching the Mission Integration Database Applications
System (MIDAS), a successful, large software application that
supports the International Space Station (ISS) program, the
team has a productive customer relationship, properly utilizes
personnel, and empowers its employees, resulting in a highly
functional software team.

What Is MIDAS?
MIDAS supports approximately twenty organizations that
use the system to develop and manage a wide array of ISS
products, including flight manifests, imagery plans, hazards
and toxicity analyses, cargo packing plans, cargo certification,
and consumables planning. The application consists of
approximately 24 subsystems, 160 user-interface modules, and
more than 330 database tables. It integrates the subsystems to
allow each customer organization to use active, current data
from other customers to help develop its products and make
data about its own products available to others. This high level
of data integration allows organizations to develop timely, high-
quality products, increases cooperation among ISS organizations
and partners, and provides a cost avoidance of approximately
$3 million annually for the ISS program.

The NASA application owner and driving force for
MIDAS, Tim Brown, has said, “Not only do we have a system
in place that benefits almost every corner of the ISS program,
but that software has also acted as a ‘glue’ for the various areas
within ISS. It is my firm belief that MIDAS has been a major
contribution to the increased coordination and cooperation ISS
now has among the various individual areas.”

Task Origin and Initial Release
In August 1999, Tim approached our company with several
pages of high-level requirements for a flight-manifesting tool
and asked us to consider bidding for the development of the
application with a target release in fall of 2000. After reviewing
the requirements with NASA and internally, we decided that

the task came with a high probability of failure, given immature
requirements coupled with the task complexity and aggressive
schedule. Recognizing the risk, but also the potential reward, we
agreed to take on the work only if we could create a process that
would give us the best opportunity for success.

We explained to NASA that we would prefer to estimate
the cost of developing detailed requirements before submitting
a build bid. We proposed that a select team of senior developers
from another Barrios project meet a few hours a day for several
months with NASA to develop a more detailed requirements
document. We could then deliver a requirements document and
a realistic build bid based on more mature data. To support this
requirements-definition effort, we asked NASA to provide a
dedicated MIDAS application owner who would have authority
to make decisions and provide guidance.

NASA accepted our plan in November and identified Tim
as our dedicated MIDAS application owner. In December we
provided a schedule for the requirements-definition phase,
which identified project tasks, external dependencies such as
customer reviews and feedback, and milestones that would be
necessary to produce a requirements document that would later
inform our build bid.

In January 2000 our team began meeting with NASA to
identify software requirements, evaluate target technologies,
and demonstrate prototype designs. In mid-April we provided
a draft requirements document for review. When the review
comments came in later than the schedule allowed, we
explained the importance of commitments being made and
kept by both parties. The review comments were incorporated
and the requirements document and build bid were delivered on
time, but only after a few tense days as both sides defended their
positions. This first speed bump was an unpleasant necessity
that ultimately provided a good foundation for mutual trust and
a very strong working relationship.

That painful event showed NASA that our schedules were
real and that both parties were responsible for the success
and on-time delivery of the project. This doesn’t mean the
schedule rules all else, but commitments and dependencies
are often related and need to be coordinated. After this event

48 | ASK MAGAZINE

both parties have always provided extremely timely support
to the project.

NASA reviewed our build bid and authorized us to proceed.
We developed a detailed schedule for design, development,
testing, and deployment. The content was determined by
collecting estimates from each software developer for the
desired capabilities; integrating those inputs; adding time for
integration testing, holidays, and vacation plans; and letting
work management software predict the end date. When that
date did not align with the customer’s desired delivery date, we
negotiated with NASA to remove content from the release and
then updated the task list until the work management software
predicted an October 27, 2000, release date.

This approach to schedule development has proven to be
extremely valuable in several ways and provides key lessons:

• �Software developers are best equipped to understand the
effort required to develop and test software.

• �When schedules are developed from the bottom up (by
the executers of the tasks) instead of from the top down
(by management), the development team takes ownership
of the schedule. Because the team is committed to the
schedule, members are invested in the project’s success and
willing to work extra hours if necessary. Conversely, when
an unrealistic schedule is dictated from above, schedule
risks can be viewed as “not my problem” by development
staff, fostering resentment and adversely affecting team
unity and performance.

• �Resource loading the tasks in work management software
and including vacations and holidays allows the program
to provide an objective, realistic schedule prediction for
the software delivery date.

• �Investing the effort to develop a schedule this way creates a
structured plan by which to communicate project progress
and potential risk to both internal and external customers.

• �Successfully executing a software release in accordance
with an approved schedule creates additional trust
between NASA and the contractor, demonstrating that
our approved schedule is effectively a commitment, not a

plan. Repeated successful execution of these schedules over
time increases customer confidence in the contractor.

• �Following this approach, MIDAS enjoys a 100-percent
on-time delivery rate for approximately 33 major software
releases and 112 maintenance releases while running
under budget.

In May of 2000 we began design and development of the
manifesting tool, conducting numerous reviews to demonstrate
progress and identify course corrections in our approach.
We included key users in integration testing. This not only
confirmed the tool was performing up to their expectations but
also trained them in the new system. After substantial internal
and external test support, MIDAS was delivered on November 3,
2000—one week later than the work management–software
plan. Although MIDAS was ready for delivery on the original
date of October 27, an unexpected flight freeze restricted
software changes. The first release of MIDAS is considered an
on-time delivery because the delivery date was altered by an
external, unexpected event.

Extending MIDAS
We began to look up- and downstream of the manifest process
itself to automate preceding and succeeding steps. For example,
all manifest changes must be approved through a request process.
By automating this step and previous steps, as well as those
steps that follow flight manifesting (cargo packing, hazards
analysis, cargo/transfer priorities, etc.), we have developed a
fully integrated system of twenty-four subsystems that provides
comprehensive traceability for hardware.

Organizations are often apprehensive of change, particularly
when they comfortably work with internally developed tools
such as a spreadsheet or database, but local tools isolate the data
from other customers. By explaining the benefits of integrated
data and committing to develop any MIDAS software upgrades
without cost to candidate organizations, we were able to attract
many organizations to our requirements table. We promised
to provide them software funded by a specific NASA budget
in exchange for their data and support of MIDAS. Integrating

When schedules are developed from the bottom up

(by the executers of the tasks) instead of from the

top down (by management), the development team

takes ownership of the schedule.

ASK MAGAZINE | 49

After an aborted docking on July 2,
Progress 38 successfully docked to the
aft end of the Zvezda Service Module on
July 4, 2010. The docking was executed
flawlessly by Progress’s Kurs automated
rendezvous system.P

h
o

to
 C

re
d

it
: N

A
S

A

data from these organizations promotes stronger working
relationships and contributes to job satisfaction for those
involved in the product development.

While this level of growth and success has been wonderful
for our users, team, and company, it has also created challenges.
The development team in place in May 2000, still intact today,
has fewer than five full-time people, who are now responsible
for twenty-four subsystems and more than 900,000 source lines
of code. Each person must have knowledge of five subsystems,
on average, in order to ensure the system can be effectively
sustained, and yet requirements for new features are identified
every month and added to the queue for MIDAS releases. A
typical software developer can maintain only about 50,000
source lines of code,1 which suggests we should have eighteen
software developers on staff.

Our small team is able to support so much complex software
due to the successful development and implementation of many
key lessons.

General Lessons
We’ve implemented several key elements into our structured
processes that have proven to be very helpful in ensuring high-
quality products, maintaining developer interest, and protecting
our customer from single-point failures.

Employee Respect and Growth
The personnel we hire are highly trained adults, and we treat
them as such. Our management approach is built upon trust
and empowerment, not oversight or checkpoints. Once work
is assigned to a developer, that developer is responsible for
creating and meeting schedule estimates, performing testing,
and managing requirements and user interaction.

If a customer’s prioritized requirements cannot be
accommodated by our team in the time requested, we negotiate
a reduction in content or move the release date so our team
can accommodate both content and schedule. This shows our
employees that we value their professional and personal time.
We want them to see this job as an enjoyable, satisfying career,
not a twenty-four-hour-a-day obligation. As a result, our team
members have never failed to step up when schedule challenges
occasionally arise.

When software anomalies are identified, we focus on
understanding the root cause of the problem and develop process
changes to reduce or eliminate the potential for repeating the
error rather than assessing blame. When necessary, we work
with employees to improve a skill or revisit a process.

We demonstrate to our NASA customer that our people are
the reason for our success and balancing their needs is just as
important as the needs of the customer. People tend to experience
stress over family, finances, and their job. If I can eliminate the

A written requirement can

be interpreted in many ways,

so the key is whether or not

the software does what the

users thought they were

asking for, not what we, the

development staff, understood

the requirements to be.

50 | ASK MAGAZINE

job stress from their life, we’ve given our team members more
energy to focus on their more critical life concerns.

We also use rotational task assignments to provide new
opportunities for staff development. Rotating personnel gives
them new skills and a deeper and broader knowledge of our
system design. A side benefit is our expanded ability to handle
surges in requirements. Rotations also give staff expanded
opportunities to learn from their coworkers.

Trusted Partnership with NASA
A strong working relationship with NASA allows our team to
excel. We established early on that our word was our bond.
By empowering our developers to own schedule estimates,
consolidating those estimates into a scheduling tool to produce
realistic schedules, working hard to honor those commitments,
and admitting when we’ve made mistakes, we have created a
working environment of mutual trust between NASA and
Barrios. NASA trusts our schedule estimates are realistic. If we
determine a new requirement is too complex for our technology,
or not a fair effort–benefit trade, NASA trusts our assessment
instead of assuming we are avoiding work.

As a result, NASA empowers us to identify and recommend
ways to make the software better, trusts our opinion on
which changes make the most sense, and often comes to the
development team to discuss ideas before taking them to our
user community.

Quality
We work hard to ensure that the software we deliver is of the
highest quality. While we’ve been successful during the ten-year
(and counting) delivery history of MIDAS, our philosophy is “our
users will remember software was delivered on time and wrong
long after they’ve forgotten it was delivered late but right.”

Delivering what users need takes precedence over delivering
on time. As users test our software, they often realize they really
need something other than what they requested. We work with
them to identify the difference between where we are and where
we need to be, and develop a plan to respond. This may mean
an update to the software prior to delivery, or we may deliver
as is and on time if the software is usable but not optimal. In
this latter case, we schedule a follow-up release to add features
identified during testing.

Delivering “what they asked for” on time just because they
agreed to that requirement three or four months ago doesn’t
mean that requirement is still accurate or appropriate. We don’t
want to deliver software if it isn’t ready. We deliver only after
our users have tested the software and agreed that it meets
their expectations and appears to be bug free, or meets their
expectations except for minor acceptable discrepancies. We
ensure high quality through a four-phase integration-testing

approach that includes testing by the developer; testing by two
other developers on the MIDAS team, one of whom is not
familiar with the software; and testing by our customer-support
group. Finally, key users test the software to ensure it meets
their expectations. A written requirement can be interpreted
in many ways, so the key is whether or not the software does
what the users thought they were asking for, not what we, the
development staff, understood the requirements to be.

A Good Team Is Like a Good Marriage
After ten years, I’ve found that our MIDAS team operates much
like a good marriage. The keys to a successful relationship
among our MIDAS team members include identifying each
other’s strengths and utilizing them, identifying each other’s
weaknesses and strengthening them, and identifying each
other’s hot buttons and avoiding them. Treating each person
with respect and empowerment while providing a stable,
interesting, and nurturing working environment promotes
team unity and stability.

By working with such a high-caliber team of software
developers and NASA for a decade, we’ve learned a tremendous
amount about successful team development, customer
relationships, and the importance of teamwork. The team’s
dedication allows our developers to sustain almost four times as
much code as a typical developer. To replace this team of “almost
five” would require more than twice as many new people of a
similar skill level in order to barely get by. That is a testament to
the power of positive team dynamics. ●

Jeff Cline is an information technology manager and
certified Project Management Professional for Barrios
Technology. Supporting the ISS program for more than twenty-
two years, he has served in various software-related capacities,
including software architect, developer, and trainer, and he has
led teams for the past fifteen years.

1. �Tom Love, “10 Must Knows for CIOs About Software Development,” November 16, 2006, www.itmpi.org/assets/
base/images/itmpi/privaterooms/tomlove/MustKnows.pdf.

ASK MAGAZINE | 51

