Shuttle Program

Formulation, Development and Operations

Master Forum # 20 April 20, 2011 Tom Moser

Space Shuttle A Real Experience and Great Machine

Introduction

- Panel members
 - <u>Tom Moser</u> Program Mgt. and Orbiter Dev.
 - Jody Singer Propulsion Systems Dev.
 - Russell Rhodes Launch Ops.
 - Frank Buzzard Reflections of Chief Engr.
 - John O'Neil Mission Ops.
- We have a lot to share and a little time
 - 30 minutes for each to speak
 - 15 minute Q&A for each segment

Passing the Torch Five Lessons Learned

- "Political Systems Engineering" has and will continue to increase.
- Freeze the configuration but not the program plan
- Simple system interfaces simplify program management and reduce risk
- "Better is the enemy of good"
- Operational flexibility cover development short falls.

Program Management and Orbiter Development

- Transitioning from Apollo era to Shuttle era
 - Huge difference in technology challenges and the political environment
- Early Shuttle program formulation
 - Studied many options
 - Froze the configuration but not the development program
- Orbiter systems development
 - Simplify system interfaces
- Early operations
 - Operating to stay within the capabilities
 - Moving from development into operations

Transitioning from Apollo Era to Shuttle Era

- Program management challenges were very different because of
 - The political environment
 - Bureaucracy and oversight increased
 - The technology requirements
 - Technology issues decreased
 - The need to keep the program "sold"
 - A new challenge

Changes in the Political Environment

- Different political environment
 - Apollo The Presidents program, full political support, money was not an issue, very little oversight, schedule driven.
 - Shuttle "Sold" to the White House, fragmented political support, money was tight, schedule was a variable, more bureaucracy
 - Apollo program management could focus on
 - Organizing and managing the government and industry team
 - Developing technologies

Technology Challenges

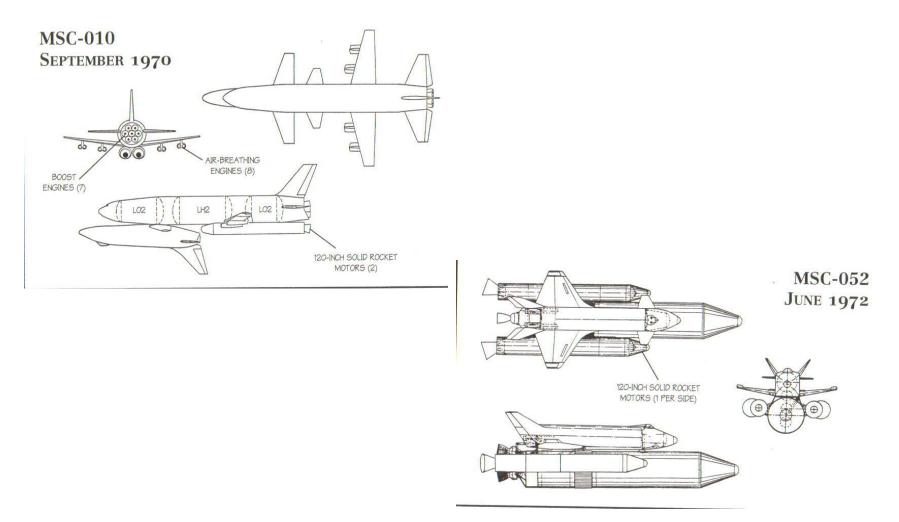
- Technology
 - Apollo "We did not know what we did not know", numerous and huge technology and ops challenges
 - Shuttle Major developments
 - Propulsion systems
 - Thermal protection systems
 - Avionics
 - Reusability
 - Shuttle Program Management had to balance technology and "routine" ops challenges

Continuously Selling the Program

- Keeping the program "sold"
 - Apollo Not an issue
 - An excited public, Congress and White House
 - Many frequent events to show progress
 - Shuttle A continuous challenge
 - Funding was tight and the mission objective was not as dramatic
 - Years of development with no "gee wiz" events until the Orbiter Approach and Landing Tests
 - The last two years the objective was to get the "SoB" in Space
 - Program Management had to re-plan schedule and content every year.
 - Increased communications up to keep the program sold and down because of a frustrated team

Transitioning from Apollo era to Shuttle era

- There seems to be a "Conservation of program management complexity"
 - Apollo had extreme technical and management challenges but was simple politically.
 - Shuttle had fewer technical and management challenges but many political challenges.
- "Political Systems Engineering" became a new and required skill for Shuttle program management.


Program Management and Orbiter Development

- Transitioning from Apollo era to Shuttle era
 - Huge difference in technology challenges and the political environment
- Early Shuttle program formulation
 - Studied many options
 - Froze the configuration but not the development program
- Orbiter systems development
 - Simplify system interfaces
- Early operations
 - Operating to stay within the capabilities
 - Moving from development into operations

Shuttle Program Design Variables

- Earth-to-Orbit Transportation System
- Multi-year budgets
- Development and ops costs
- Payload mass and size (delivery and return)
- Operational orbits
- Fully or partially reusable flight systems
- Turn-around time
- Entry cross-range

Shuttle Configurations

Early Shuttle program formulation

- Developing requirements and options
 - Phase A/B Establish the configuration and top level requirements
 - Phase C/D Establish the design details and derived requirements
- The balance was between development and operations costs
 - The program had to fit within the annual projects funds available
 - Operations costs suffered


Early Shuttle program development

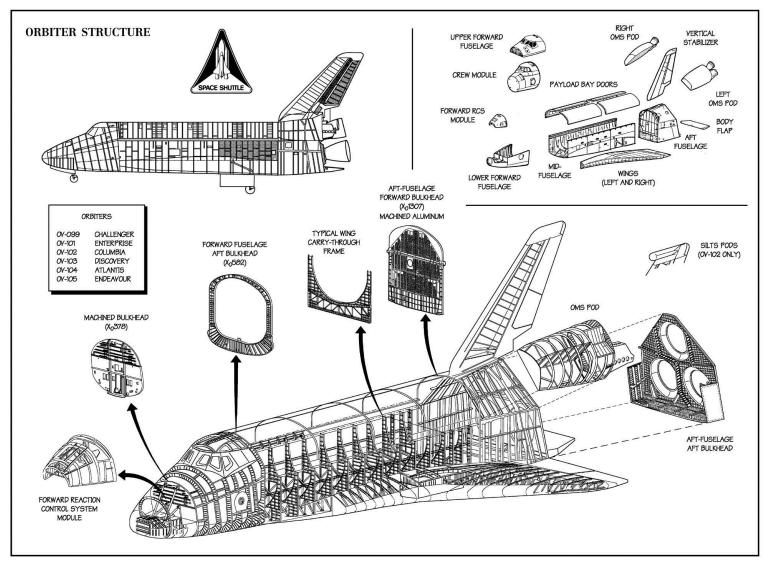
- The Baseline Design did not change
 - The development of the four Shuttle flight elements proceeded in parallel
 - The Orbiter was developed for the original costs estimate of \$5 billion because
 - Many and continuous changes were proposed but denied
 - Some subsystems were changed to "make work" and reduce weight and costs, but with no impact on other subsystems
- Orbiter Project management philosophy:
 - "Better is the enemy of good"
 - "The most innocuous change is the most far reaching"

Managing the Program by Changing Plans not Configuration

- The Orbiter certification plan evolved to accommodate budget reductions
 - Full-up systems Thermal Vacuum tests of the forward and aft fuselage eliminated
 - Component TV tests performed
 - Full system analyses performed
 - Early flights designed to be benign, verify analyses, and gradually "open the envelope"
 - Two Orbiter airframes for strength and life verification were eliminated
 - The *Challenger* airframe was tested to 120% of mechanical design loads and later used as a fight vehicle
 - Structural analytical models were verified
 - Thermal "loads" were added analytically
 - Smaller acoustic fatigue tests were conducted for life certification
 - Flight certification and safety were never compromised

Structural Test Article- Challenger

Program Management and Orbiter Development

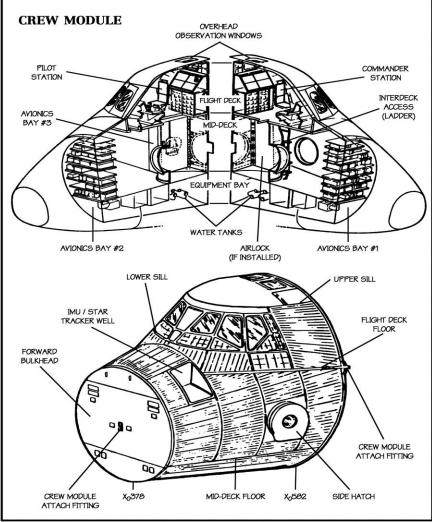

- Transitioning from Apollo era to Shuttle era
 - Huge difference in technology challenges and the political environment
- Early Shuttle program formulation
 - Studied many options
 - Froze the configuration but not the development program
- Orbiter systems development

 Simplify system interfaces
- Early operations
 - Operating to stay within the capabilities
 - Moving from development into operations

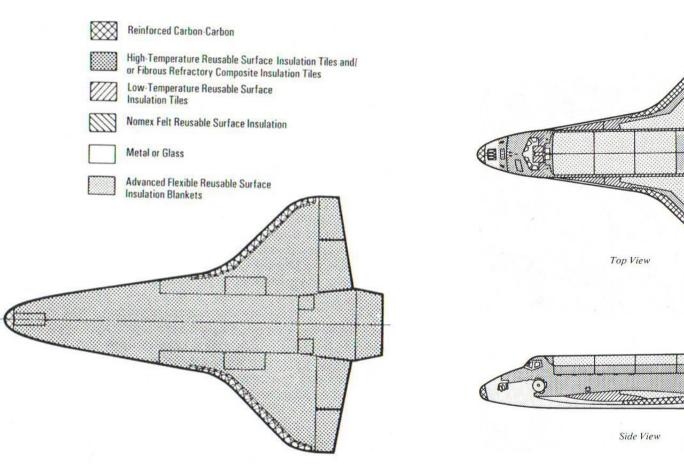
Orbiter Development

- Simple Structural Interfaces
 - Payloads in the Orbiter payload bay
 - Decoupled the structural design of the Orbiter and the Payload by having a "statically determinant" attachments
 - Moveable attachments enabled a combination of 10 million payload elements, sizes, masses, and C.G. locations
 - Crew Cabin in the Forward Fuselage
 - The CC was designed to "float" in the fuselage
 - This simplified the design of the crew cabin to that of a pressure vessel and increased the reliability with pressure tests.
- Simple interfaces and parallel development reduced program management complexity

Structure Configuration


Crew Cabin in Fuselage (Simple Interface)

•Pressure vessel design


•Four discrete attachment points with the forward fuselage

•Minimum heat transfer to Crew Module

•Fracture mechanics – leak before rupture

Orbiter Thermal Protection System

Tile to Structure Interface

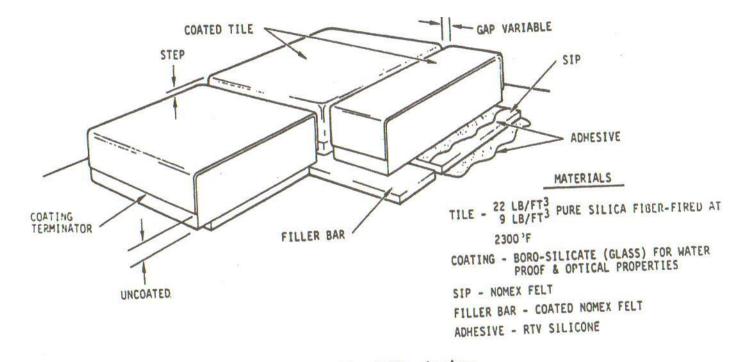


Figure 7.- Tile design.

Complex Interface Big Program Management Issue

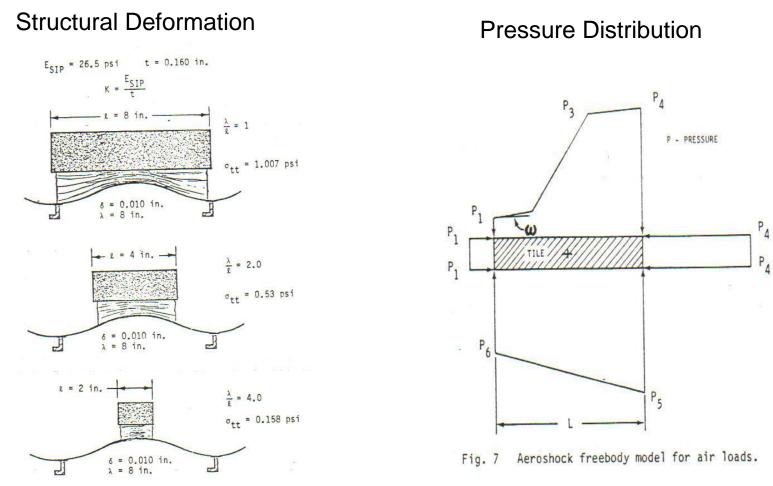


Fig. 6 Effects of substrate deflection.

Orbiter Lesson Learned

- Simple interfaces simplify program management
 - Orbiter to ET
 - Payload to Orbiter
 - Crew Cabin to Fuselage
 - TPS tiles to Orbiter

Program Management and Orbiter Development

- Transitioning from Apollo era to Shuttle era
 - Huge difference in technology challenges and the political environment
- Early Shuttle program formulation
 - Studied many options
 - Froze the configuration but not the development program
- Orbiter systems development
 - Simplify System interfaces
- Early operations
 - Operating to stay within the capabilities
 - Moving from development into operations

Wing Load Surprise on STS-1

- Wing loading during ascent was greater than expected
 - The center of aerodynamic pressure was further aft and outboard
- How to proceed?
 - Placard ascent flight parameters to stay within the structural capabilities of the wings.
- Lesson learned: Ops guys sometimes have to save the development guys' A - -.

Fuel Cell Surprise on STS -2

- Problem: Debris clogged the line, shut down one of three fuel cells, and terminated the mission early.
- Fix: Put a debris filter in the line.
- Better fix: Put in two debris filters.
- Wrong: Hydrogen gas was trapped between the two filters and injected into the reservoir. We had a potential bomb on the Orbiter.
- Lesson learned: One filter was good. Stick with the principle that "Better is the enemy of good".

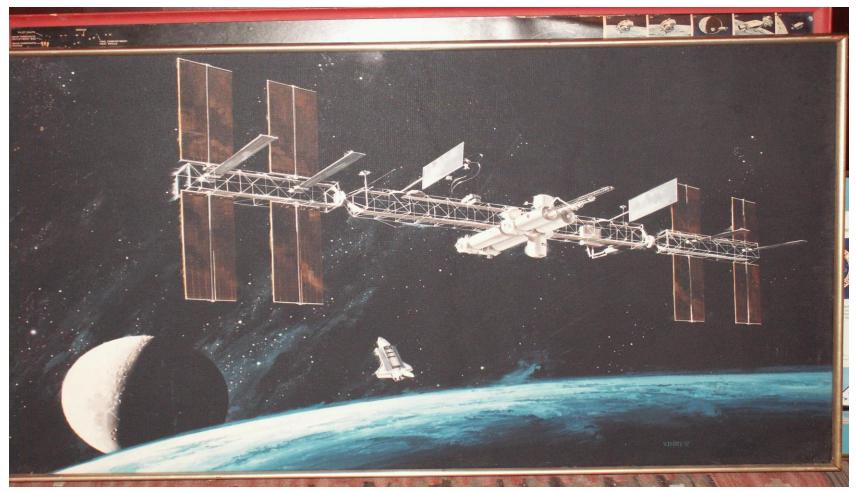
Planning for Spares

- A new challenge for Shuttle management:
 - Planning and providing operational spares for a reusable fleet of vehicles
 - Primarily determining the failure rate, warehousing, and funding.
 - Early Shuttle flights had to obtain spares from cannibalizing vehicles on the assembly line
- Lessons learned: Logistics is not "sexy", but it is necessary for efficient operations.

Spares for Facilities in Space

- A large Systems Engineering challenge
 - If the facility is to be "available" for operations 90% of the time
 - Every operating system, subsystem, or component has to be "system engineered" to be compatible with
 - Limited storage of spares at the facility
 - Limited crew time for repairs
 - Limited transportation to the facility
- Lesson learned:
 - Establish the "availability" requirements for every "black box"
 - Determine the optimum solution of how many spares, where to store, maintenance manpower, and costs.

Shuttle "Ham & Eggs Society"


A successful Program Manager needs a fully committed team.

Space Station

- To date this had been the ultimate in changes required for the program to be successful
- Everything has changed
 - Program Management
 - Baseline configuration
 - Program partnership
 - Budgets and Schedules
 - Logistics

Space Station - 1990

Managing Program Changes

- Macro changes in NASA programs
 - Small changes in Mercury, Gemini, Apollo, Shuttle
 - Large changes in Space Station
 - Huge changes in Constellation
 - Changes will occur in future programs
- Make progress, but anticipate change