Extending the Promise: A decade for science and exploration on the International Space Station

Julie A. Robinson, Ph.D., ISS Program Scientist, NASA
julie.a.robinson@nasa.gov

APPEL Masters Forum
April 2011
Stages of the International Space Station from a scientist’s point of view

Project Management
- Design
- Assembly
- Utilization
- Extension

Science
- Promises
- Waiting
- Research
- Benefits

Organizational Culture
- Requirements & Planning
- The Vehicle & The Crew
- Research Mission Focus
- Research Mission Renewal

Paradigm Shifts
- Operating safely is not enough
- Experienced system managers and operations teams judge researchers
- ISS is a real laboratory—it’s OK if things don’t work the first time!
Objectives for Research on ISS

- **NASA-funded Research**
 - Human Research Program
 - Life & Physical Sciences
 - Technology Demonstration
 - Astrophysics, Heliophysics, Earth & Space Science

- **US National Laboratory**
 - Commercial Sector
 - Non-profit organizations
 - U.S. Government Agencies

- **International Research**
 - CSA ASC
 - JAXA

Education
NASA Research Infrastructure

2 Human Research Facility Racks

8 ExPRESS Racks

3 Minus Eighty-Degree Laboratory Freezers for ISS (MELFI)

Microgravity Science Glovebox (MSG)

Fluids Integrated Rack (FIR)

Combustion Integrated Rack (CIR)

Materials Science Research Rack

Window Observational Research Facility (WORF)

Source: ISS Program Scientist
ESA and JAXA Research Infrastructure

- Biolab
- European Drawer Rack (EDR)
- European Physiology Module (EPM)
- European Transport Carrier (ETC)
- Fluid Science Lab (FSL)
- Ryutai (Fluids)
- Saibo (Cell Biology)
- Kobairo (Gradient Heating Furnace)
- Multi-Purpose Small Payload Rack (MSPR)
- Monitor All-sky X-ray Image (MAXI)
- Space Environment Data Acquisition (SEDA)
- Superconducting Sub millimeter-wave Limb-Emission Sounder (SMILES)

Source: ISS Program Scientist
3 Primary Resource Dimensions

each affect the capacity for the other
Major factors influencing research use of ISS

Resource limitations (e.g., upmass, downmass, crewtime)
- Flight delays to resupply and return plan
- Operations scenarios that reduce crew time for research

Cost to use the platform
- Transportation costs
- Costs of payload development

Strategies to tip the balance: diverse transportation providers, procure upmass for more users, simplify integration, communicate successes

Research Demand
- NASA Funding
- Non-NASA Funding
- Research breakthroughs that drive funding (Earth benefits & applications)
The Beginning of the “Era of ISS Utilization”

Cumulative ISS Utilization Crew Time
(US and Russian Operating Segments, All Partners)

Year

Total Utilization Crew Time (Hours, Cumulative)
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Assembly Complete
6-crew
Americans have reaped benefits from the design and assembly of an engineering marvel, and from the peaceful international partnerships.

The research accomplishments of the next 5 years will determine the lifespan of the Space Station.
What kind of benefits come from research in space?
Top 5 results from “early” ISS research—primarily biotech and applied physics

- Bacterial virulence and candidate vaccines
- Duschenne’s muscular dystrophy
- Compact gravity-feed water purification technology being used in disaster areas
- Patent for microencapsulating drug for treating testicular cancer.
- New fundamental equations for capillary flow
Biology: Microbes in Space

3 modes of response

- More virulent
- Multiply more rapidly
- No change

Discovery
Space Exploration
Earth Benefits

Benefits
Microbial Vaccine Development – Scientific findings from International Space Station research have shown increased virulence in *Salmonella* bacteria flown in space, and identified the controlling gene responsible. AstroGenetix, Inc. has funded their own follow-on studies on ISS and are now pursuing approval of a vaccine as an Investigational New Drug (IND) with the FDA. They are now applying a similar development approach to methicillin-resistant *Staph aureus* (MRSA).
Example: Competing approaches to vaccine development

- NASA-funded research on *Salmonella* virulence
- Astrogenetix Inc.-funded vaccine development over 9+ flights
- Shorter development time
- Investigational New Drug application for *Salmonella* and *MRSA*
- Interest from other biotech companies and NIH in using ISS
- Additional NASA-funded and international research on virulence of other microbes
- Basic science of mechanisms

Source: ISS Program Scientist, NASA
Macromolecular Crystallization—A Japanese scientist crystallized HQL-79 (human prostaglandin D2 synthase inhibitor protein) on the **International Space Station**, identifying an improved structure and an associated water molecule that was not previously known. This protein is part of a candidate treatment for inhibiting the effects of Duchenne's muscular dystrophy. Continuing work is looking at other proteins and viruses.

Source: ISS Program Scientist, NASA
Cancer Treatment Delivery—Microcapsules (micro-balloons) for drug with desirable properties developed on the International Space Station were reproduced on Earth and were successful in targeting delivery of anti-cancer drugs to successfully shrink tumors in ground tests. A device to produce similar capsules on Earth has now been patented, and clinical trials of the drug delivery method are beginning.

Source: ISS Program Scientist, NASA
Regen ECLSS – Water recycling, oxygen generation, and carbon dioxide removal are critical technologies for reducing the logistics re-supply requirements for human spaceflight. The *International Space Station* demonstration project is applying lessons learned from operational experiences to next generation technologies. The resin used in the ISS water processor assembly have been developed as a commercial water filtration solution for use in disaster and humanitarian relief zones.
Fluid Flow – Controlling the flow of fluids in the absence of gravity is a challenge for designing spacecraft liquid propellant, water and recycling systems. In space, liquids can climb container walls, making it hard to empty containers, measure the contents of storage vessels, and obtain consistent performance in devices where liquids and vapor mix. Capillary flow experiments on the *International Space Station* produced the first space-validated models describing fluid behavior in space. Three patents have been filed.

Source: ISS Program Scientist, NASA
Discovery in our Future
Disciplines that use the Laboratory

- Biology & Biotechnology
- Human Physiology & Performance
- Physical Sciences (Microgravity)
- Technology Development & Demonstration

- Gravity is a constant force on Earth
- It cannot be completely controlled or removed in experiments
- It dominates and masks other forces in processes
- The ISS provides a laboratory environment to control this force
Disciplines that use the Laboratory

- Earth Science*
- Fundamental physics and Astrophysics*
- Education*

- ISS has the most capable power system EVER in orbit
- Its frequent transportation and serviceable external attachment points
- Power, data, and thermal for a wide variety of instruments
Alpha Magnetic Spectrometer (AMS-02), Cosmic Ray detector, Nobel Laureate, Samuel Ting
Collaboration of DOE and multiple organizations
Mission: to advance knowledge of the Universe and lead to the understanding of its origin by searching for antimatter, dark matter and measuring cosmic rays.
Why does AMS measure the particles in cosmic rays?

- **Antimatter**
 - Any observation of an antihelium nucleus
 - 1999, AMS-01 10^{-6} for the antihelium/helium flux ratio
 - AMS-02 will search with a sensitivity of 10^{-9}

- **Dark matter**
 - If neutralinos exist, they should collide and give off an excess of charged particles
 - Peaks in the background positron, anti-proton, or gamma ray flux

- **Strangelets**
 - Six types of quarks (up, down, strange, charmed, bottom and top) experimentally, but only up and down quarks on Earth
 - Strangelets might have extremely large mass and very small charge-to-mass ratios, detectable by AMS
Particles and nuclei are defined by their charge (Z) and energy ($E \sim P$).

- TRD: Identify e^+, e^-
- Silicon Tracker: Z, P
- ECAL: E of e^+, e^-, γ
- RICH: Z, E
- Magnet: Z
- TOF: Z, E

Z, P are measured independently from Tracker, RICH, TOF and ECAL.
AMS PI: “Exploring New Territory with a Precision instrument is the Key to Discovery”

<table>
<thead>
<tr>
<th>Facility</th>
<th>Original purpose, Expert Opinion</th>
<th>Discovery with Precision Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.S. CERN</td>
<td>π N interactions</td>
<td>Neutral Currents $\rightarrow Z, W$</td>
</tr>
<tr>
<td>Brookhaven</td>
<td>π N interactions</td>
<td>ν_e, ν_μ CP violation, J</td>
</tr>
<tr>
<td>FNAL</td>
<td>Neutrino physics</td>
<td>b, t quarks</td>
</tr>
<tr>
<td>SLAC Spear</td>
<td>ep, QED</td>
<td>Scaling, Ψ, τ</td>
</tr>
<tr>
<td>PETRA</td>
<td>t quark</td>
<td>Gluon</td>
</tr>
<tr>
<td>Super Kamiokande</td>
<td>Proton decay</td>
<td>Neutrino oscillations</td>
</tr>
<tr>
<td>Hubble Space Telescope</td>
<td>Galactic survey</td>
<td>Curvature of the universe, dark energy</td>
</tr>
<tr>
<td>AMS on ISS</td>
<td>Dark Matter, Antimatter Strangelets,…</td>
<td>?</td>
</tr>
</tbody>
</table>

Chart Courtesy of Vernon Jones, NASA HQ
AMS goals: $\text{He/He} = 1/10^{10}$, $e^+/p = 1/10^6$, Spectra to 1%

AMS is DOE sponsored International Collaboration, including:
- 16 Countries, 60 Institutes, and 600 Physicists
- NASA/SOMD will have contributed about $100M$ to the mission.

Unexpected results from first flight (AMS-01)
- Many more positrons (e^+) than electrons (e^-)

AMS will measure cosmic ray nuclei energy spectra from 100 MeV to 2 TeV, with 1% accuracy over the 11-year solar cycle.
- These spectra will provide experimental measurements of the assumptions that go into calculating the background in the search for Dark Matter, i.e., $p + C \rightarrow e^+, p$.
For More Information

ISS Reference Guide

Cumulative Results Reports:

NASA/TP–2009–213146–REVISION A

Education on ISS 2000-2006:

NASA/TP-2006-213721

World Wide Web

http://www.nasa.gov/iss-science/

Facilities Catalog

click on “Facilities” at web link above

ISS Research Blog “A Lab Aloft”

http://go.usa.gov/atI

Twitter @ISS_Research

http://twitter.com/@ISS_Research