

Commercial Crew Program Overview

Masters Forum 20

Maria Collura April 22, 2011

Commercial Crew Program

CCP Objective

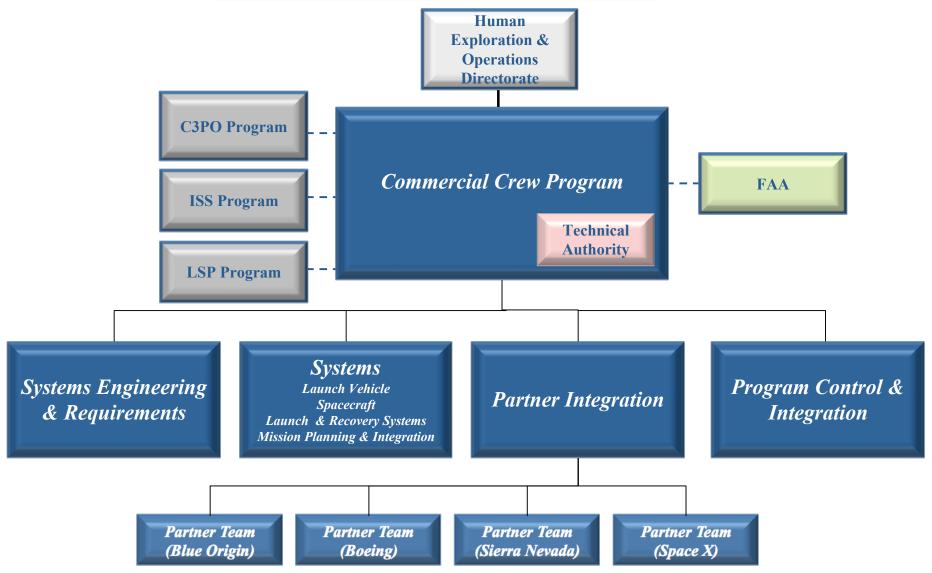
CCP is leading NASA's efforts to develop an American-made commercial capability for crew transportation and rescue services to the ISS following this year's retirement of the space shuttle fleet



- Kennedy Space Center will host the program office dedicated to enabling commercial human spaceflight capabilities.
 - Program Manager (PM) will reside at KSC
 - **Deputy Program Manager** located at JSC

Program Mission

- Manage the investment in the development of commercial end-toend space transportation systems
- Manage the CTS (Crew Transportation System) certification process
- Lead the technical and programmatic partner integration and approval functions



CCP Organization

CCT-1100 Series Documents

ESMD -CCTSCR-12.10

Agency and HQ Level Requirements levied on the Program intended to certify a CTS to carry a NASA crewmember to LEO

CCT-PLN-1100

High Level Program Summary of roles, responsibilities, and interfaces between CCP and partners in the development of CTS, and How NASA and the CP will work together to achieve a Certified Human Flight Vehicle

CCT-REQ-1130

Crew Transportation and Services Requirements -must meet to transport NASA Crew to the ISS

SSP 50808

ISS Visiting Vehicle Requirements -must comply with to interface with the International Space Station

CCT-PLN-1120

 $\label{lem:continuous} \textbf{Crew Transportation Technical Management Processes} - \text{summary of technical management processes that support certification and expectations for evidence of compliance}$

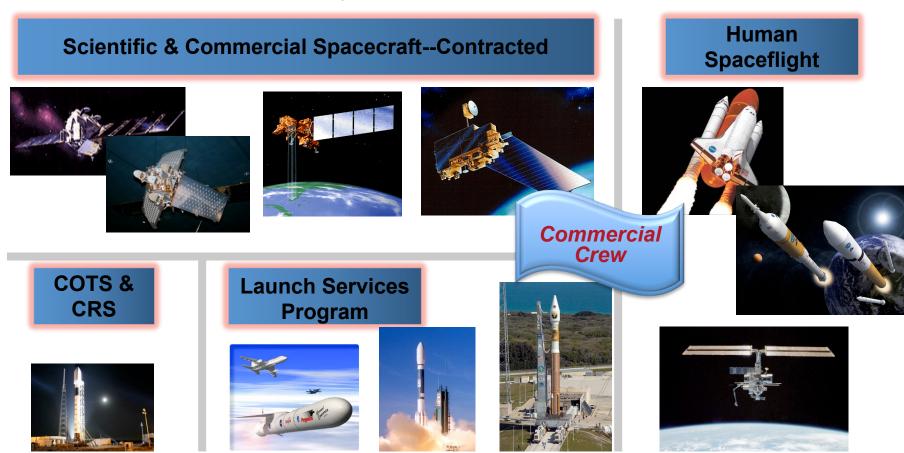
CCT-STD-1140

Crew Transportation Design Standard Guidelines - provides expectations, and criteria used in evaluation of technical standards

CCT-STD-1150

Crew Transportation Operations Standard Guidelines - provides expectations for minimum criteria and practices for operations

CCT-DRM-1110


Crew Transportation System DRMs – potential reference missions for current and evolvable systems architecture designs

Insight/Oversight Model – Level of Involvement

NASA will perform insight/oversight on the Commercial Partner's design, development, and certification process to evaluate the end-to-end crew transportation system

Low In/Oversight

Intense In/Oversight

Commercial Crew Structure and Timelines

Title	Purpose	2010	2011	2012	2013-2016
CCDev	Develop and demonstrate technologies that enable commercial human spaceflight capabilities.	February Awards A	April I II Agreements Complete		
CCDev Round 2	Mature the Design and Development of elements of the system, such as launch vehicles and spacecraft.	October Announcement for Proposals	April Awards	May Agreements Complete	
CCP Phase I Design	Design of integrated commercial crew systems.			allo (Pinn	emit
CCP Phase II DTEC	Mature Development, Test Evaluation & Certification of end-to-end systems. Prepared for services to ISS by end of 2016.	Umd	ieu Dea	92	
			Today		

Commercial Crew Development (CCDev)

- The NASA Recovery Act stimulus funding, included \$50M to stimulate efforts within the private sector to develop and demonstrate technologies that enable commercial human spaceflight capabilities
- On February 1, 2010 five partners were announced and received funding:
 - Blue Origin
 - Boeing
 - Paragon
 - Sierra Nevada Corporation
 - United Launch Alliance (ULA)
- All Agreements were concluded by December 2010, with the exception of ULA and Boeing who received no-cost extensions to April 2011

Commercial Crew Development Round 2 CCDev2

CCDev 2 Summary

Participant Name	Work Summary	NASA Funding	
Blue Origin	Space Vehicle design to SRR, pusher escape ground and flight testing, and engine pump and thrust chamber testing	\$22,005,000	
Boeing	CST-100 design maturation to PDR and launch vehicle integration	\$92,300,000	
Sierra Nevada Corporation	Dream Chaser crew transportation system design maturation to PDR and component testing	\$80,000,000	
SpaceX	Side-mount LAS engine design maturation and partner-funded crew accommodation prototype	\$75,000,000	
	Total Funding	\$269,305,000	

Blue Origin

NASA investment: \$22M

System Description: Crew transportation system comprised of a reusable biconic Space Vehicle launched first on an Atlas V launch vehicle and then on Blue Origin's own Reusable Booster System.

CCDev2 Content: Mature Space Vehicle design through System Requirements Review, mature the Pusher Escape System, and accelerate engine development for Reusable Booster System.

The Boeing Company

System Description: Commercial crew transportation system comprises the reusable CST-100 spacecraft, launch services, and ground systems. CST-100 is compatible with multiple launch vehicles and is reusable for up to ten missions.

<u>CCDev2 Content</u>: Mature CST-100 design through Preliminary Design Review & perform development tests.

NASA investment: \$92.3M

Sierra Nevada Corporation

System Description: Dream Chaser is a reusable, piloted lifting body, derived from NASA HL-20 launched on an Atlas V.

CCDev2 Content: Mature Dream Chaser design through a Preliminary Design Review with some subsystems to Critical Design Review, and conduct significant hardware testing.

NASA investment: \$80M

Space X

NASA investment: \$75M

System Description: The crew transportation system is based on the existing Falcon 9 launch vehicle and Dragon spacecraft which have been designed since inception for crew carriage with relatively minimal modification. Both the longest-lead and most safety-critical system is the Launch Abort System.

CCDev2 Content: Mature the flight-proven Falcon 9 / Dragon transportation system focusing on developing an integrated, sidemounted Launch abort System.

