Success Legacy of the Shuttle Program

Space Shuttle Main Engine
Relentless Pursuit of Improvement

Katherine Van Hooser
SSME Chief Engineer
NASA Marshall Space Flight Center

Presented at KSC
1/27/2011
Space Shuttle Main Engine (SSME) Relentless Pursuit of Improvement

- SSME 101
- Design evolution
- Verification by ground test
- Analytical tool evolution
- Lessons
SSME is the First Reusable Large Liquid Rocket Engine

<table>
<thead>
<tr>
<th>Propellants</th>
<th>O₂/H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power level (RPL) 100%</td>
<td>469,448 lb</td>
</tr>
<tr>
<td>Nominal power level (NPL) 104.5%</td>
<td>490,847 lb</td>
</tr>
<tr>
<td>Full power level (FPL) 109%</td>
<td>512,271 lb</td>
</tr>
<tr>
<td>Chamber pressure (109%)</td>
<td>2,994 psia</td>
</tr>
<tr>
<td>Specific impulse at altitude</td>
<td>452 sec</td>
</tr>
<tr>
<td>Throttle range (%)</td>
<td>67 to 109</td>
</tr>
<tr>
<td>Gimbal range</td>
<td>+/- 11 °</td>
</tr>
<tr>
<td>Weight</td>
<td>7,748 lb</td>
</tr>
<tr>
<td>Service life</td>
<td>55 flights / 27,000 sec</td>
</tr>
<tr>
<td>Total program hot-fire starts</td>
<td>3,162 starts</td>
</tr>
</tbody>
</table>

(as of January 2011)
High Performance Staged Combustion Cycle

- All propellants consumed – performance, efficiency
- Five variable valves – flexibility, wide operational control
- Serial low- and high-pressure pumps – wide flow range
- Fail-op / fail-safe control system
SSME Block Improvements Timeline

<table>
<thead>
<tr>
<th>Configuration</th>
<th>1970s</th>
<th>1980s</th>
<th>1990s</th>
<th>2000s</th>
<th>2010s</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMOF/Phase II</td>
<td>1st engine test</td>
<td>1st flight</td>
<td>Last flight Jul 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contract award</td>
<td>1st rated power level test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block IIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **FMOF/Phase II**
 - Upgrades to Nozzle, MCC, HPTPs, Controller, LPOTP, and LPFD

- **Block I**
 - New HPOTP
 - 2-Duct Powerhead
 - Single-tube HEX

- **Block IIA**
 - Large Throat MCC
 - Modified LPFTP, LPOTP, HPFTP, injector, software

- **Block II**
 - New HPFTP
 - AHMS added later

AHMS (active) June 2007
Phase II SSME
First Flight — April 1983

Powerhead
- Main Injector oxidizer inlet vane rework
- MCC
- EDNi reinforced outlet neck

HPTPs
- Desensitize coolant system
- Bearing and blade improvements
- Rotor stability

Ducts
- Low Pressure Fuel Duct helium barrier

Block II Controller
- New type and increased memory
- Improved producibility and maintainability
- High order language for software

LPOTP
- Thrust Bearing lock-nut spacer

Nozzle
- Added insulation to aft manifold and drain lines

- Operational Since STS-6 (April 1983)
- Designed & Validated For Reusability
- World Class Booster Performance
- 0.9994 Demonstrated High Reliability
- Logged 231 Engine Flights
- 100% Mission Success
Block I SSME
First Flight — July 1995

• 1st Flight STS-70 (July 1995)
• Improved Safety, Reliability & Operability

Alternate High Pressure Oxidizer Turbopump
- Precision castings
- Ceramic bearing balls
- Eliminated seal pressure redline

Two-Duct Powerhead
- Improved liner and injector life
- Baffleless main injector
- Thick, cut-back turning vanes
- Eliminated 74 welds
- Part count reduced by 52
- Cycle time reduced 40%

Single Tube Heat Exchanger
- Eliminated all 7 criticality 1 interpropellant welds
- FOD tolerant 25% thicker tubes
- Low maintenance

Hot Gas Temp Sensors
- Improved reliability
Block IIA SSME
First Flight — January 1998

Large Throat Main Combustion Chamber
- Engine pressure & temperatures reduced up to 10%
- Increased channel wall cooling
- Simple cast manifolds, eliminated 52 welds
- Cost & cycle time reduction over 50%

Low Pressure Oxidizer Turbopump
- Ceramic bearing balls
- Robust rotor alignment
- Increased performance inducer

Low Pressure Fuel Turbopump
- Kevlar jacket insulation
- Reblocked nozzle
- Eliminated plug weld

High Pressure Fuel Turbopump
- One-piece EDM turbine inlet
- Increased life turbine blades
- Improved rotor balance

Main Injector Specific Impulse Modifications
- Eliminated parasitic hydrogen losses
- 0.4 sec Isp recovery

1st Flight STS-89 (Jan 1998)
- >2X Reliability Improvement
- Certified To 104.5% Nominal Thrust
- Improved Safety, Life & Operability
- Reduced Cost

Purge Check Valves
- Added upstream Filters

Software
- Self-calibrating actuators
- Nominal coefficients
- Improved logic
- Increased redundancy thermocouples
SSME Block II
First Flight — June 2001

- 1st Block II flight June 2001
- Improved System Operability & Safety
- Goal of 10 Missions Between Overhauls

- OPOV Process Changes
- Main Fuel Valve
- Pressure Sense Hardware
- Turbopump-to-Powerhead Flange (G-6)
- Revised Liquid Air Insulation

Block II High Pressure Fuel Turbopump
- Improved turbine blade fatigue capability
- Robust turbine housing
- Pump Inlet Housing burst margin increased
- Stiffer/heavier rotor
- Robust hybrid bearing systems
- Extensive use of precision investment castings
- Coolant liner redline eliminated
Advanced Health Management System (AHMS)

HPOTP vibration and HPFTP vibration and speed signals from sensors sent to engine Controller for processing

Engine Controller filters and converts analog signals to digital data for further processing

Real-Time Spectral Analysis (Fast Fourier Transforms) Performed to detect and measure pump synchronous frequency

Sensors processed:
3 HPOTP accelerometers
3 HPFTP accelerometers
2 HPFTP speed sensors

- Engine Controller Response
- Sensor Disqualifications
- Engine Shutdown

23% reduction in catastrophic SSME failure
Successful development has reduced ascent risk by factor of 4 since STS-6
SSME Launch Performance

Goal: No Delays, Scrubs, or Aborts

60 consecutive launches since STS-73 (Oct-95) without an SSME-caused Delay, Scrub, or Abort.
SSME Maintenance Reduction

- Engine removal and shop maintenance

- Block I HPOTP
 - On-engine inspection

- Block II HPFTP
- Check valve filters
- MCC cavity pressure
- Inspections reviewed
SSME Ground Testing
Key to Program Success

• Testing has been used throughout the SSME program
 • In Development:
 • To evaluate design integrity
 • For Certification:
 • To demonstrate the evolved design is ready for flight
 • On the Production Design:
 • To investigate and resolve anomalies
 • To verify & expand operating margins

2,730 Starts / 887,717 Seconds of SSME Testing
Development Testing
Data from Early in the Program

- Thirty-seven tests and thirteen turbopump replacements to achieve 50% Rated Power Level (RPL)
- Ninety-five tests to reach 100% RPL
- Late 1978 before first flight start sequence was finalized
- 147 design changes deemed necessary for Full Power Level (109% RPL)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Tests</th>
<th>Test Seconds (Thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Problems
1. Start Sequence
2. High Pressure Fuel Turbopump Whirl
3. High Pressure Oxidizer Turbopump Explosion
4. Fuel Preburner Burn Through
5. High Pressure Fuel Turbopump Turbine Failure
6. Main Oxidizer Valve Fire
7. Nozzle Steerhorn Failure
8. Main Fuel Valve Housing Rupture

Rated Power Level Test Seconds

Test Seconds

STS-1
Testing a Mature Design

- Determine acceptability of flight hardware
- Investigate issues / resolve anomalies
 - Issues affecting single components or engines
 - Issues affecting all units of a given component
 - In-Flight Anomalies
 - Issues requiring tests for flight rationale
 - Vehicle issues
- Verify or increase operational envelope
 - Flight Rule changes or demonstration
 - Off-nominal testing (operational extremes)
 - Malfunction testing to demonstrate redundancy
 - Overtest to demonstrate safety margins

Tests have been conducted for each one of these reasons since 2000, in spite of SSME’s maturity.
Conclusions About Testing

• Testing is necessary even on a mature, well-understood, production engine
 • Acceptance testing sometimes reveals issues in new hardware
 • Some problems do not present themselves until late in production
 • Many issues are related to the number of cycles on components
 • Small numbers of assets means not all tolerance stack-ups or environments can be explored
 • Process escapes can occur at any time
 • Some design features (mating of certain components, for example) can only be demonstrated during a hotfire
 • Some issues are vehicle-driven or are related to flight operations that change outside the engine program’s control
Evolution of Analytical Tools, Materials Key to SSME Success

• Many engineering disciplines are required to achieve and maintain SSME’s success

• SSME is:
 • A success because of the advances made in these disciplines
 • Responsible for the advancement in the state of the art in many engineering disciplines

• Advances in engineering disciplines include:
 • Fluid Dynamics: Extensive work conducted understanding cavitation and increasing abilities to model it
 • Structural Dynamics: Increased knowledge in finite element prediction techniques, data acquisition techniques, and structural dynamics of extremely high frequency responses
 • Rotordynamics: Better equipped to model and predict instability, synchronous responses, and external loading
 • Materials: Continuous improvements made in Materials and Processes for reliability, performance, producibility, and reduced cost
Lessons from SSME’s Relentless Pursuit of Improvement

- Test outside the comfort zone
 - Go beyond normal operation
 - Understand margins, engine characteristics
 - Use the lessons learned along the way
 - Identify problems on the ground, not in flight

- Drive for understanding
 - Define environments
 - Be thorough in data mining
 - Match models and experience
 - Utilize knowledge of hands-on technicians

- Fix problems, don’t manage them
 - Incorporate multiple changes in blocks to reduce test costs
 - Listen to the “fringes” – don’t be afraid of unconventional ideas