STARDUST

Bringing a Comet Home

Joe Vellinga, LM Program Manager

December 1995 to January 15, 2006

Discovery 4 Mission PI Don Brownlee @ Univ of Wash
Managing Agency
Industrial Partner
Aerogel Sample Collector

1 cm Interstellar Grid

3 cm Comet Grid

Particle Carrot Track
Whipple Shield Does Its Job

1 cm
2 cm
5 cm
11 cm
Stardust Assembled
 процесс_pic() Predicted vs. Observed Brightness Center

NavCam CCD

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Pixel

Line

Mirror Angle

0 10 20 30 40 50 60 70 80 90 100 110 120

Mirror Angle (deg.)

Nucleus Tracking Control

Default Trajectory

Roll Maneuver, If It Had Been Required

Navigation put it in Field of View

Locked On

observed centers
First Image Released Near Wild 2 Closest Approach

- Many Flat Bottomed Craters
- Jets May be Coming From Walls of ‘Sublimation Craters’
Encounter Attitude Control

Flight Pointing Errors from Enc_Abs Attitude

Rotation about each Axis (degrees)
- X Rotat.
- Y Rotat.
- Z Rotat.

Roll Maneuver

Time from Closest Approach (minutes)
Nucleus Tracking

Location of Center of Brightness in CCD Frame
Closest Approach

Distance = 237 km
(9 km closer)
Time = 757538732 SCLK
(87 seconds early)

236.4 km
6 National Awards

• Popular Mechanics Breakthrough Award, Stardust, October 2006
• Aviation Week Program Excellence Award, Stardust, November 2006
• National Space Club Nelson P. Jackson Aerospace Award, Stardust, March 2007
• Aviation Week Laureate Award, Stardust, March 2007
• Rotary Stellar Award, Stardust Flight and Recovery Team, May 2007
• Smithsonian National Air & Space Museum Current Achievement Award, Stardust Comet Sample Return Mission Team, April 3, 2008
Why Sample

Return

Try to Launch This . . .

Or this . . .
STARDUST NExT

- Extended and completed the investigation of Comet Tempel 1 initiated by Deep Impact in 2005
STARDUST NExT Vehicle
Lessons Learned

- Get LV/KSC Launch Mass Commitment up front
 - Error Revealed Half Way Through Phase B (366 kg to 312 kg)
- One STL is Marginal; Should have Two (Workload & Side Swap)
- Need Strong System Engr Leadership of Software Dev & Test
- Strong, but Small Project Offices (JPL/LMA)
- Contractor Assumes More-than-normal Responsibility - Trust
- Spend Reserve $ on Risk Reduction Opportunities
 - SoftSim
 - ATUs
- S/C Can Despin Themselves (28 kg saved)
- One Sided 4 Thruster Attitude Control Works But…
- SDSTs, TWTAs, IMUs Can be Turned Off and On
- Cruise Mission Ops Can be Efficient
 - < 6 EP at LM for much of mission
 - 12 month & 6 month periods with no contact
Stardust Structure
Stardust was a Successful FBC Project

- Schedule: Phase B 9 months; Phase C/D 28 months to launch – Ready to Launch of 1st Day of Window
- Launched Under Budget - $1M to Phase E
- How
 - No Creep (Requirements, Processes, Team)
 - Science Team Wanted Volatiles Added – NO
 - ARC wanted Heatshield Instrumentation – NO (twice)
 - Very Little Iteration
 - Adequate but Lean Staff (Project Office & LM)
 - Bounding Analyses
 - Adequate – Design, Analyses, Tests
 - Offloaded People
 - EVM Straight forward & Integrated at LM & JPL