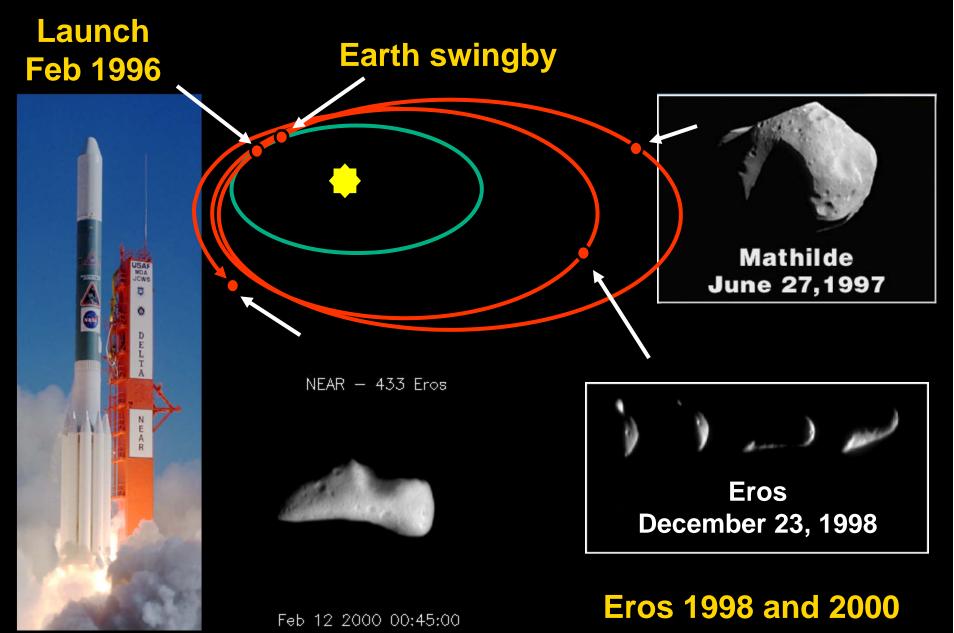
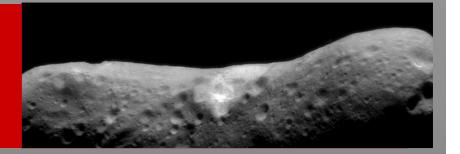

Near Earth Asteroid Rendezvous

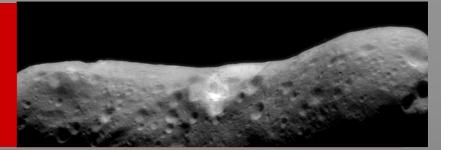


First Launch of Discovery Program


Andrew Cheng (NEAR Project Scientist)

Johns Hopkins University Applied Physics Laboratory

Near Earth Asteroid Rendezvous

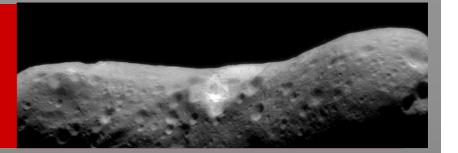


NEAR

- The first asteroid mission
- The first spacecraft visit to a C-type asteroid (flyby of 253 Mathilde)
- The first asteroid rendezvous (433 Eros)
 - First orbital operations around a small, irregular body
- The first asteroid landing (433 Eros)

More "firsts"

- Programmatic and institutional firsts
 - First planetary mission at APL (also a first for NASA)
- First use of internet for internal and external project communications as well as outreach
 - A.F. Cheng blog, NEAR image of the day
- First missions with open data policy requirements and archive requirements to the Planetary Data System


"faster, better, cheaper"

 NEAR: a new way of doing business, at lower cost, with acceptable risk

	Discovery Requirement	NEAR Performance	
Development Time	<36 mo	<27 mo	Faster
Cost to Launch +30 days (FY-92 \$)	<\$150M	<\$112M	Cheaper
Spacecraft and Payload	Acceptable risk Limited scope science	Highly redundant spacecraft Comprehensive payload	Better
Launch Vehicle	Delta equivalent or smaller	Delta 7925	

NEAR Implementation

- APL responsible for project management
- APL spacecraft
- APL provided facility instruments
 - NASA selected Facility Instrument Science Team
 - NASA selected a Participating Scientist Team
- APL responsible for mission operations
- JPL responsible for navigation and DSN support

Management Principles

Practices for Inexpensive, Short Development Cycle Spacecraft (a'la JHU/APL)

- Schedule from start to launch must be ≤ 36 months
- Establish small, experienced technical team with authority to do mission
- Design spacecraft and instruments to cost
- Use lead engineer method for all subsystems
- Reliability and redundancy must be designed-in (not expensive)
- Have R&QA engineer report directly to project manager
- Single agency manager to interface with contractor

Simple Spacecraft

Three-axis stabilized

Total weight: 805 kg

- Propellants: 320 kg

- Experiments: 60 kg

Science payload

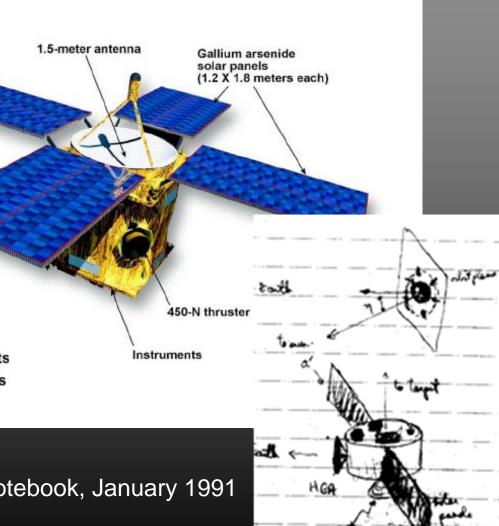
Multispectral imager

- Near-infrared spectrometer

- X-ray spectrometer

Gamma-ray spectrometer

- Laser altimeter


- Magnetometer

Dual-mode propulsion system

[ΔV capability: 1450 m/s]

Solar array power @ 1.00 AU: 1800 watts

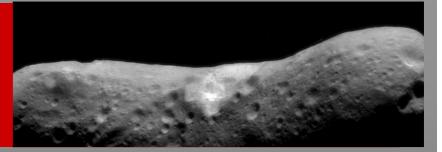
Two solid-state recorders: 1.7 x 109 bits

Focused Mission

Near Earth Asteroid Rendezvous

Measurement Objectives

Bulk Properties


shape gravity field mass spin state density magnetic field

Surface Properties

- Elemental and mineralogical composition
- Heterogeneity of structural and compositional units
- Physical, geological and morphological characteristics

[original slide scanned from hard copy which predates Powerpoint]

Facility Instruments

Near Earth Asteroid Rendezvous

Facility Instrument Characteristics

Visible Imager

95 x 161 μr resolution

2.25° x 3° FOV

8-position filter wheel

X-ray/y-ray Spectrometer

Al, Mg, Si, Fe, Ti, Ca

U, Th, K

NEAR IR Spectrograph

~0.8-2.7 µm spectral range spectral resolution 22/44nm

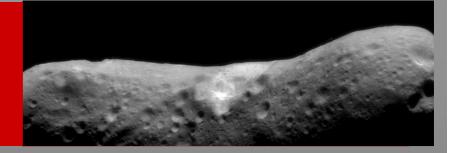
Magnetometer

sensitivity <1 nT

Laser Altimeter*

range 50 km Resolution 6 m

Radio Science*


two-way Doppler to 0.1

mm/s

[scanned original slide with ancient typos]

^{*}engineering subsystems

How it was done

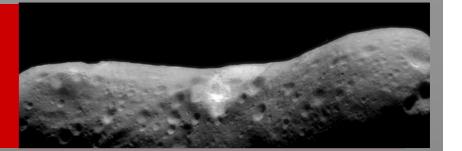
Near Earth Asteroid Rendezvous

Technical Approach

- Approach suited to Discovery Mission
 - Optimized to schedule
 - Consistent with program cost, propellant mass fraction
- Design to schedule approach
 - Modularity in propulsion system
 - Distributed architecture
 - Large (50%) use of off-the-shelf components
 - 1533 data bus
 - Qualification of subsystems prior to spacecraft delivery

Schedule set in 1992 and followed through launch

Near Earth Asteroid Rendezvous

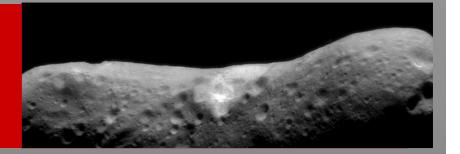


Preliminary Schedule

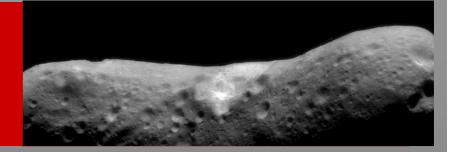
EROS MISSION

CALENDAR YEAR	93				94			95			96			
	1	1	1		1	1	1	1	1	1	1		1	
INSTRUMENT SELECTION		Δ		1 2									١	
CONCEPTUAL DESIGN REVIEW			Δ										١	
PRELIMINARY DESIGN REVIEW				Δ									١	
CRITICAL DESIGN REVIEW						Δ							-	
MISSION READINESS REVIEW										Δ			-	
INSTRUMENT/ S/C INTERFACES			77	7777	77								-	
PRELIMINARY LAYOUTS			ZZ	7777	77					1			-	
DETAIL DESIGN				IZZ	77	////							-	
FABRICATION							777							
SUBSYSTEM TEST							Z	///	Z					
SPACECRAFT LEVEL TEST										4				
LAUNCH										Δ	FEB			

Mission Operations learned in flight


- Concept of operations developed after launch for a small team
 - There was no good model for NEAR (the last orbital mission was Galileo)
- Little or no simulation of orbital operations
 - No previous orbital mission around an irregularly shaped, small object
 - Navigational accuracy could not be predicted
 - Spacecraft predicted to safe often (which did NOT happen)
- Eros flyby was in some sense a blessing

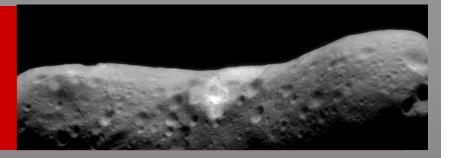
PDS Archive Delivery


- PDS was in its infancy when NEAR was organizing and implementing its delivery
 - PDS was defining its processes, procedures, and archive definitions
- NEAR data successfully archived
- Lessons Learned:
 - NEAR had different data format for Science Team than PDS (re-create data for archival purposes)
 - learned to define project data formats in a PDS approved format
 - Review of PDS data formats with PDS began past mission midpoint
 - learned to start review process at mission start (with data format definitions) and team with PDS (Data Archive Working Group) to facilitate intermediate reviews

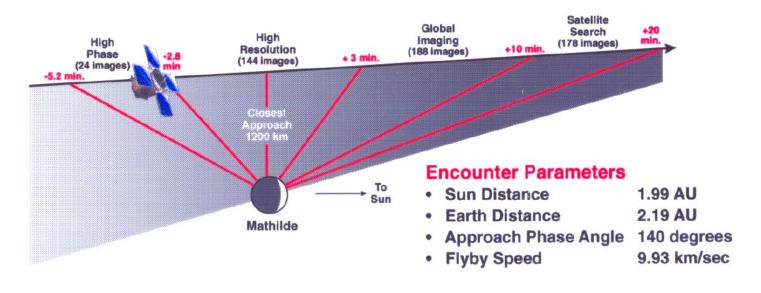
Mission Milestones

- Launch (February 17, 1996)
- Mathilde Encounter (June 27, 1997)
- Earth Flyby (January 23, 1998)
- Eros Flyby (December 23, 1998)
- Eros orbit insertion (February 14, 2000)
- Eros landing (February 12, 2001)
- Landed science operations through end of mission (February 28, 2001)

Mission Success



Near Earth Asteroid Rendezvous



- Feb 2001 mission completed with landing on 433 Eros
 - All data in PDS, September 2001
- Science Objectives fulfilled
- Mission Extras
 - Mathilde fly-by
 - Two low altitude passes of Eros surface (< 5km)
 - Landing
- Final Cost within 3% of total mission cost given to NASA in 1994
 - Includes thirteen month delay due to burn anomaly, December 1998

Mathilde Encounter

Mathilde Encounter: June 27, 1997

NEAR Spacecraft

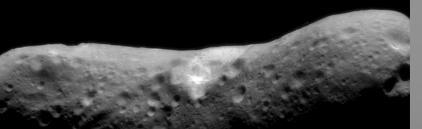
- · Wide-angle camera
- Limited power
- No scan platform

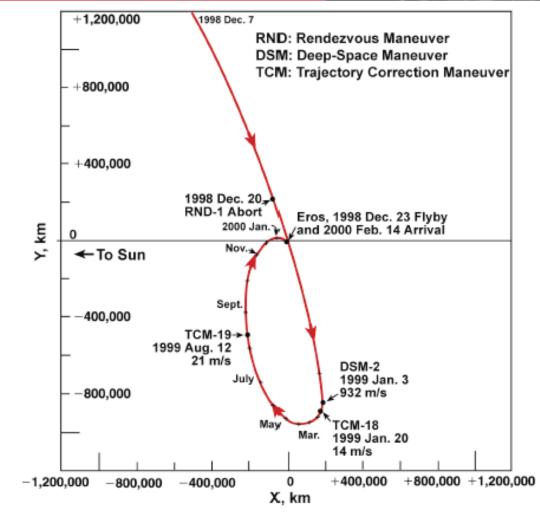
253 Mathilde

- 50 x 50 x 70 km
- C-type
- Rotation period: 17.4 days!

Expected Science Return

- 534 Images (Best resolution ~ 200 meters)
- Mass determination (uncertainty ~ 5%)

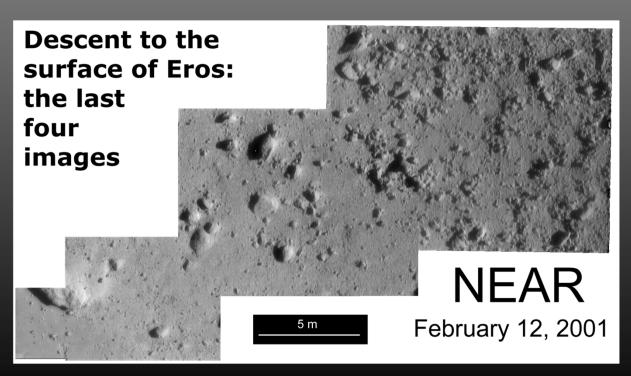

One very bad day



Aborted Rendezvous Burn December 20, 1998

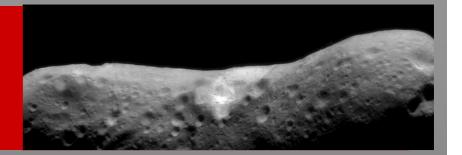
- On board autonomy system shut down main engine at onset
 - Accelerometer normal to thrust vector
- Spacecraft went into "Safe Mode" as planned
- Spacecraft tumbled
 - Expended 28 Kg. of fuel; not as planned and still unexplained
- Spacecraft went deeper to "Sun Safe Mode" as solar arrays exceeded angle to sun
- Recovered spacecraft 27 hours later, as planned
- Eros flyby on December 23,1998
- Successful main engine burn on January 3, 1999
- Rendezvous with Eros delayed until February 2000

U-turn After Burn Abort



The First Asteroid Landing

- Spacecraft not designed for landing
- Touchdown at ~1.6 m/s, 316 million km from Earth
- Spacecraft
 acquired
 scientific data
 for two weeks
 after landing



What went right

- NASA, APL, and the community needed NEAR to be successful
- Implementing institution was ready, willing, and able
 - NEAR was top priority
- Strong support from NASA HQ
 - Need to show that low cost planetary missions can be successful
 - Need to establish the Discovery Program

PI Mission Management

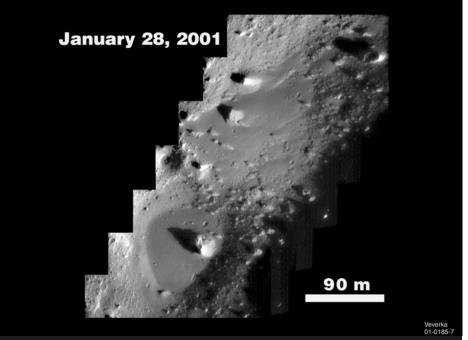
- The project management troika
 - Science
 - Engineering
 - Management
- The challenges of leading a strong team
 - You must make decisions in a timely manner
 - You don't know everything
 - You need your team
 - Your team needs you

Project Management

- Communication
 - Understanding requirements
 - Understanding priorities
 - No surprises; problems don't improve with age
- Simple, clearly defined lines of authority and responsibility
 - PI, PM, SE and other key people roles
 - Institutional roles
 - Clear and simple interfaces

Project Management

- Aim high, but
 - Watch your requirements
 - Be aware of the 'two miracles rule'
- Following process (or relying on heroes)
 - Test as you fly, but the devil is in the details
 - Process is expensive
 - There can be value added from reviews
 - Get useful feedback, training; assure steady progress


Science Success

- All science objectives met or exceeded
- No major spacecraft anomalies at Eros

Geologically active surfaces (Selene)

