

22 | ASK MAGAZINE | INSIGHT

Is Software Broken?

By STEVE JOLLy

A few years ago my attitude toward the design and development of space systems fundamentally
changed. I participated in a Kaizen event (part of Lockheed Martin’s Six Sigma/lean culture) to
ascertain contributing factors and root causes of various software overruns and schedule delays that
can precipitate cost and schedule problems on both large and small space programs alike, and to
propose process improvements to address those causes. I didn’t anticipate that software’s modern
role in spacecraft development could itself be a problem.

ASK MAGAZINE | 23

A Kaizen event is a tool used to improve processes, a technique
popularized by the Toyota Corporation that is now used widely
in industry. Stakeholders and process experts come together to
analyze or map an existing process, make improvements (like
eliminating work that adds no value), and achieve commitment
from both the process owners and the users. In this particular
Kaizen, software and systems engineering subject-matter experts
came together from across our corporation to participate. We
had data from several recent spacecraft developments that we
could study.

We all suspected some of the cause would be laid at the feet of
systems engineering and program management, with the balance
of the issues being inadequate adherence to established software
development processes or processes that needed improvement.
But the Kaizen event is designed to ensure we systemically
addressed all the facts, and our large room soon became a jungle
of flipcharts covered in a dazzling array of colored sticky notes,
each chart representing a different aspect of the problem and
each sticky note a potential root cause. The biggest problem was
there seemed to be somewhere around 130 root causes.

What we had expected based on other Kaizen events was
that this huge number of root causes was really a symptom
of perhaps a half-dozen underlying true root causes. A small
number can be addressed; we can form action plans and attack
them. Hundreds of causes cannot be handled. Something was
wrong either with the Kaizen approach or with our data.

I came away from the event somewhat puzzled. We resumed
the activity several months later, but we did not materially
improve upon our initial list and get to a satisfying short list.
However, several of us began to notice a pattern. Even though we
couldn’t definitively link the large majority of causes, we found
that problems in requirements issues, development, testing, and
validation and verification of the actual code all revolved around
interfaces.Whenviewed fromahigher altitude, thepreponderance
of the causes collectively involved all the spacecraft subsystems.
With such systemic coverage of functions on the spacecraft, it was
tempting to conclude that software processes were broken. What
else could explain what we were seeing?

I couldn’t accept that conclusion, however. I knew many
of our software engineers personally—had walked many
developments with them—and although we had instances
of needing better process adherence and revised processes,

something else was clearly at work. I reflected on eight recent
deep-space missions that spanned the mid-nineties through
2008, and it became clear that software has become the last
refuge for fixing problems that crop up during development.
That fact is not profound in itself; what is profound is that
software is actually able to solve so many problems, across the
entire spacecraft.

For example, while testing the Command and Data
Handling (C&DH) subsystem on the Mars Reconnaissance
Orbiter, we discovered a strange case of hardware failure deep
in a Field-Programmable Gate Array (FPGA) that would result
in stale sun-sensor data and a potential loss of power, which
could lead to mission failure. To make the interplanetary
launch window, there was no time to change or fix the avionics
hardware. Instead, we developed additional fault-protection
software that was able to interrogate certain FPGA data and
precipitate a reset or “side swap” should the failure occur. Indeed,
software is usually the only thing that can be fixed in assembly,
test, and launch operations and the only viable alternative for
flight operations. In fact, close inspection during our Kaizen
showed that most of our 130 root causes could be traced to
inadequate understanding of the requirements and design of
a function or interface, not coding errors. Suddenly the pieces
began to fall into place: it’s all about the interfaces. Today,
software touches everything in modern spacecraft development.
Why does software fix hardware problems? Because it can. But
there is a flip side.

In the past software could still be viewed as a bounded
subsystem—that is, a subset of the spacecraft with few interfaces
to the rest of the system. In today’s spacecraft there is virtually
no part of the system that software does not have an interface
with or directly control. This is especially true when considering
that firmware is also, in a sense, software. Software (along with
avionics) has become the system.

This wasn’t the case in the past. For example, Apollo had
very few computers and, because of the available technology,
very limited computing power. The Gemini flight computer
and the later Apollo Guidance Computer (AGC) were limited to
13,000–36,000 words of storage lines.1 The AGC’s interaction
with other subsystems was limited to those necessary to carry
out its guidance function. Astronauts provided input to the
AGC via a keypad interface; other subsystems onboard were

24 | ASK MAGAZINE24 | ASK MAGAZINE

controlled manually, by ground command, or both combined
with analog electrical devices. If we created a similar diagram
of the Orion subsystems, it would reveal that flight software
has interfaces with eleven of fourteen subsystems—only two
less than the structure itself. Apollo’s original 36,000 words of
assembly language have grown to one million lines of high-level
code on Orion.

Perhaps comparing the state-of-the-art spacecraft design
from the sixties to that of today is not fair. The advent of object-
oriented code, the growth in parameterization, and the absolute
explosion of the use of firmware in evermore sophisticated
devices like FPGAs (now reprogrammable) and application-
specific integrated circuits (ASIC) have rapidly changed the
art of spacecraft design and amplified flight software to the
forefront of development issues. Any resemblance of a modern
spacecraft to one forty years ago is merely physical; underneath
lurks a different animal, and the development challenges have
changed. But what about ten years ago?

Between the Mars Global Surveyor (MGS) era of the mid-
nineties to the 2005 Mars Reconnaissance Orbiter (MRO)
spacecraft, code growth in logical source lines of code (SLOC)
more than doubled from 113,000 logical SLOC to 250,000
logical SLOC (both MGS and MRO had similar Mars orbiter
functionality). And this comparison does not include the firmware
growth from MGS to MRO, which is likely to be an order of
magnitude greater. From Stardust and Mars Odyssey (late 1990s
and 2001) to MRO, the parameter databases necessary to make
the code fly these missions grew from about 25,000 for Stardust
to more than 125,000 for MRO. Mars Odyssey had a few
thousand parameters that could be classified as mission critical
(that is, if they were wrong the mission was lost); MRO had more
than 20,000. Although we now have the advantage of being able
to reuse a lot of code design for radically different missions by
simply adjusting parameters, we also have the disadvantage of
tracking and certifying thousands upon thousands of parameters,
and millions of combinations. This is not confined to the Mars
program; it is true throughout our industry.

But it doesn’t stop there, and this isn’t just about software.
Avionics (electronics) are hand-in-glove with software. In
the late 1980s and early 1990s, a spacecraft would typically
have many black boxes that made up its C&DH and power
subsystems. As we progressed—generation after generation

of spacecraft avionics developments—we incorporated new
electronics and new packaging techniques that increased the
physical and functional density of the circuit card assembly.
This resulted in several boxes becoming several cards in one
box; for example, the functionality of twenty-two boxes of
the MGS generation was collapsed into one box on Stardust
and Mars Odyssey. Then, with the ever-increasing capability
of FPGAs and ASICs and simultaneous decrease in power
consumption and size, several cards became FPGAs on a single
card. When you hold a card from a modern C&DH or power
subsystem, you are likely holding many black boxes of the past.
The system is now on a chip. Together with software, avionics
has become the system.

boTToM LINE: THE GAME HAS

CHANGED IN DEvELopING SpACE

SySTEMS. SoFTWARE AND AvIoNICS

HAvE bECoME THE SySTEM.

So then, there are no magic few underlying root causes for
our flight software issues as we’d hoped to find at our Kaizen
Event, but the hundreds of issues are unfortunately real. Most
revolve around failed interface compatibility due to missing
or incorrect requirements, changes on one side or other of
the interface, poor documentation and communication,
and late revelation of the issues. This indicates our systems
engineering process needs to change because software and
avionics have changed, and we must focus on transforming
systems engineering to meet this challenge. This is not as
simple as returning to best practices of the past; we need new
best practices. The following are a few ways we can begin to
address this transformation:

ASK MAGAZINE | 25ASK MAGAZINE | 25

1. Software/firmware can no longer be treated as a subsystem,
and systems engineering teams need a healthy amount of
gifted and experienced software systems engineers and
hardware systems engineers with software backgrounds.

2. We	 need agile yet thorough systems engineering
techniques and tools to define and manage these
numerous interfaces. They cannot be handled by the
system specification alone or by software subsystem
specification attempting horizontal integration with the
other subsystems; this includes parameter assurance and
management.

3. Using traditional interface control document techniques
to accomplish this will likely bring a program to its knees
due to the sheer overhead of such techniques (e.g., a
200-page formally adjudicated and signed-off interface
control document).

4. Employing	 early interface validation via exchanged
simulators, emulators, breadboards, and engineering
development units with the subsystems and payloads is
an absolute must.

5. If	 ignored, interface incompatibility will ultimately
manifest itself during assembly, test, and launch
operations and flight software changes will be the only
viable means of making the launch window, creating an
inevitable marching-army effect and huge cost overruns.

Bottom line: the game has changed in developing space
systems. Software and avionics have become the system. One
way to look at it is that structures, mechanisms, propulsion,
etc., are all supporting this new system (apologies to all you
mechanical types out there).

Today’s avionics components that make up the C&DH
and power functions are systems on a chip (many boxes of the
past on a chip) and, together with the software and firmware,
constitute myriad interfaces to everything on the spacecraft. To
be a successful system integrator, whether on something as huge
as Orion and Constellation or as small as a student-developed
mission, we must engineer and understand the details of these
hardware–software interfaces, down to the circuit level or deeper.
I am referring to the core avionics that constitute the system,
those that handle input-output, command and control, power
distribution, and fault protection, not avionics components that

attach to the system with few interfaces (like a star camera).
If one merely procures the C&DH and power components as
black boxes and does not understand their design, their failure
modes, their interaction with the physical spacecraft and its
environment, and how software knits the whole story together,
then software will inevitably be accused of causing overruns
and schedule delays. And, as leaders, we will have missed our
opportunity to learn from the past and ensure mission success.

A final note of caution: while providing marvelous
capability and flexibility, I think the use of modern
electronics and software has actually increased the failure
modes and effects that we must deal with in modern space
system design. Since we can’t go back to the past (and who
would want to?), we must transform systems engineering,
software, and avionics to meet this challenge. I am ringing the
bell; we need a NASA–industry dialogue on this subject. ●

Note: Kaizen is a registered trademark of Kaizen Institute Ltd. Six
Sigma is a registered trademark of Motorola, Inc.

steVe JoLLy is with Lockheed Martin Space Systems. He has
development and flight operations experience from many deep-
space missions and was the chief systems engineer for the Mars
Reconnaissance Orbiter. Most recently he was a member of
the NASA integrated design optimization team for Orion and is
currently the chief systems engineer for GOES-R.

1. james E. Tomayko, Computers in spaceflight: the nasa experience, NASA Contractor Report 182505 (Washington,
DC: NASA History office, 1988).

