Big Data Analytics and Machine Intelligence Strategy

Manjula Ambur
NASA Langley Research Center
April 2014
Outline

- What is Big Data
- Vision and Roadmap
- Key Capabilities
- Impetus for Watson Technologies
- Content Analytics Use
- Potential use cases
What is Big Data?
Objective: Enable NASA employees to utilize and apply these transformational technologies as force multipliers for scientific and engineering discoveries and systems innovation and optimization.

Vision: Researchers, Engineers, and Project Teams have “Machine/Virtual Expert(s)/Colleague(s) and Personalized Intelligent Agents at their disposal that can:

- Digest, synthesize, and keep up with global knowledge
- Answer specific questions
- Synthesize & makes sense of volumes of big and heterogeneous data/information – data intensive scientific discovery
- Provides predictions for new technologies and design configurations
- Processes modeling & simulation data in real time
- Human cognition and machine cognition augmenting each other providing unimaginable capabilities
- Eventually machine experts and human experts working side by side

Team: Thought Leaders; Researchers; Engineers; IT Specialists; Statistician; Computer Scientist
Human Experts and Digital Experts augmenting and learning from each other in an organic way

Foundational Components

<table>
<thead>
<tr>
<th>Data Mining</th>
<th>Machine learning</th>
<th>Knowledge Technologies</th>
<th>Data Visualization</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Documents</td>
<td>- Semantics</td>
<td>- In-Situ Analysis</td>
<td>- Ontologies</td>
</tr>
<tr>
<td>- Images</td>
<td></td>
<td>- Algorithms</td>
<td>- Content Analytics</td>
</tr>
<tr>
<td>- Web sites</td>
<td></td>
<td>- Global Sources</td>
<td></td>
</tr>
</tbody>
</table>

Knowledge Base

- Distributed data stores
- Journals
- Blogs
- Data sets
- Videos
- Databases
- Global Sources

Data Management & Collaboration

- Data Capture
- Meta Data Tagging
- Remote Access
- Analytics Sent to Data
- Data Governance
- Digital Notebook
- Data Curation
- Open web
- Web sites

Big Data Analytics & Machine Intelligence Capabilities - Roadmap

- Deep Q/A "NASA Watson" 2025
- Symbiosis 2025
- 2035
- Search
- 2015 2020 2025
- Deep content Analytics
- Data Intensive Scientific Discovery
- Digital Experts/Colleagues
Deep Content Analytics
Application of sophisticated natural language processing and machine learning techniques to large corpus of knowledge to obtain insights, trends, and answers to specific questions.

Data Intensive Scientific Discovery
The 4th Paradigm – Advancing from hypothesis based experiments and mod-sim to data intensive scientific discovery; deriving new insights and correlations not possible otherwise.

2014 – Knowledge Assistant Pilot - Incubators start using analyzing 100K plus articles
2012 – Content Analytics Pilots begin
2016 – KA for one discipline with trends and alerts
2015 – Expand pilot program into more disciplines
2017 – Knowledge Assistant for core disciplines
2020 – NASA Watson Pilot with multimedia and Q &A capability
2020 – Real time data analytics for Mod Sim data pilots
2018 – Establish Data Discovery Capability in a few disciplines
2020 – Automatic data capture, tagging and integration

Virtual Research & Design Partner

And more...
Center Focus on Knowledgeability and Technical Excellence
- Scientists and engineers access, search, find, integrate, synthesize and digest global knowledge - Beyond Search

Started with Federated/Integrated search
- Enterprise Google implemented in 2006 with good results

Investigated semantic technologies
- Found to be resource and subject matter expertise intensive

Started to investigate text mining and data mining technologies
- IBM Watson made a big flash and started that journey.

Vision: Wearable or Embedded Intelligent Agent
- Configurable and personalized intelligent agent that is wearable to embedded activated by voice or even brain waves
Investigation: 2011
- 2011: Center wide IBM Watson Seminar by IBM Expert
- 2011: Center Workshop: Developed Use cases

Prototype: 2012
- Visit to Watson lab and discussions with IBM Experts
- Decided to experiment with IBM Content Analytics, a key component of IBM Watson; cost effective starting point
- Successful Prototype with IBM Content Analytics to apply Advanced Content Analytics (ACA) techniques & methodologies to 3 use cases
 - In collaboration with mission organizations and IBM Experts

Pilot: 2013
- Pilot with Advanced Content Analytics: 4 use cases
- Workshop with Senior Leaders and Researchers for next steps
 - Decided the focus to be Knowledgeability and Innovation – ‘Knowledge Assistant’

Capability: 2013-2014
- Advanced content analytics being offered as part of OCIO capabilities/Services and as part of our ‘Mining for Knowledge’ sessions
- Knowledge Assistant Pilot being formulated in specific disciplines with Q and A capability – beginnings of “NASA Watson”
What is Content Analytics?

Content Analytics refers to the text analytics process plus the ability to visually identify and explore trends, patterns, and statistically relevant features found in various types of content.
Use Cases Examples

- **Analysis of Sonic Boom Research**
 - Focusing on specific areas without reading; used Automated clustering and categorization techniques; ~1500 Reports

- **Analysis of National Safety Board Accident Reports**
 - Gain better Insights and save time in analysis; analyzed ~3600 reports

- **Finding Technology Opportunities from FBO.gov**
 - Analyze data looking for opportunities - trends, experts in chosen technology areas. Data Source: 120,000 XML current and archived records

- **Analysis of Structures and Materials Publications**
 - Concept search, pattern analysis and classification of publications in structures and materials areas from 14,300 publications/reports

- **Research Opportunities in Autonomous Flight areas**
 - Subject search and analysis, trends, experts and opportunities (current, emerging and niche) in fields related to autonomy; 1,500 documents from many different sources (NASD, AIAA, Engineering Village, etc, ...)

Purpose: Enable and Improve Center Knowledgeability and Innovation

Current Methodology:
- A significant amount of time is spent mining for targeted knowledge, manually by SME.
- Data sits unexplored. Connections not made.
- Insights missed.
- A knowledge assistant would serve as a virtual colleague.

Goals:
- Keeping up with technical and competitive intelligence
- Making sense quickly: Find wheat in the chaff.
- Identify Strategic business opportunities
- Enable cross Discipline Innovation
- Identify and connect networks of experts.

Value:
- Help/Improve Center Knowledgeability - Market/Competitive/Technical Intelligence
- Identify key trends, emerging experts and expert networks; summaries, alerts, recommendations, non-obvious relationships and intuitive visualization of results
- Give users the ability to ask questions and get answers -- Deep Q&A
Potential Use Cases

- Enable better and faster decision making utilizing unstructured big data
 - Data intensive scientific discovery – Fourth Paradigm
 - Knowledge discovery and mining

- Predictions for business/technology opportunities
 - Machine-automated survey of engineering / science trends worldwide
 - Determine emerging trends
 - Find breakthrough connections among seemingly un-related disciplines

- Analysis & visualization of Big data: PetaByte-sized and rapid-flow real time data and information streams
 - Computational Fluid Dynamics, sensor data analysis & visualization
 - Enables Simulation based science and engineering helping to reduce the time and enabling lab to computer interactions and synthesis

- Deep Q and A system using Cognitive and computational Knowledge engine
 - Answers to specific engineering and aerospace questions