

Development and Implementation of the MAVEN Mission: PI Lessons Learned

Bruce Jakosky LASP / University of Colorado

MAVEN Will Allow Us to Understand Escape of Atmospheric

Gases to Space

CU/LASP • GSFC • UCB/SSL • LM • JPL

- Measure energetic drivers from the Sun, response of upper atmosphere and ionosphere, and resulting escape to space
- Understand the key processes involved, allowing extrapolation to loss • over Mars history

The MAVEN Spacecraft

The MAVEN Science Instruments:

Sun, Solar Wind, Solar Storms

SWEA

SWIA

Ion-Related Properties and Processes

MAG

LPW

STATIC

Neutrals and Ions Plus Evolution

IUVS

NGIMS

MAVEN Cost And Schedule

- MAVEN key milestones
 - Step-1 proposal submission, August 2006
 - Selection for competitive Step-2/Phase A, January 2007
 - Selection for development for flight, September 2008
 - Launch, November 2013; Mars Orbit Insertion, September 2014
 - End of primary mission operations, November 2015
 - Original "End of project" (end of data analysis and archiving through primary mission), April 2016
- MAVEN life-cycle cost (through primary mission)
 - Original AO cost cap, \$475M (project-controlled costs only, including launch vehicle, FY06 dollars); "Mars Scout" mission, but same class as Discovery
 - LCC approved at confirmation was \$671M (equivalent to AO cap; includes nonproject-controlled costs, HQ-held reserves, tallied in real-year dollars)
 - LCC as most-recently revised, ~\$603M, reflects substantial under-run
 - Science augmentation from reserves during Phase C/D, supported C/D/E activities

Science Has To Be The Driver

- There's incredible pressure from all corners on major decisions that can/will drive the project:
 - Pressure to fly a particular instrument
 - Competitive pressure and desire to win the program at any cost
 - Need for institutions to win the program to stay solvent
 - Different perspectives within the team on the science to be carried out
- Decisions have to balance multiple factors
 - Science
 - Technical risk
 - Cost and schedule
- Ultimately, you're flying a science mission, and you have to stay true to the science
- Examples
 - Decision not to descope to "minimum acceptable mission" late in Phase A in order to be more cost competitive
 - Decision to descope an instrument from my own institution and to descope my lab director
 - Decision to not add camera that would have enhanced perceived value while not contributing substantially to MAVEN science

- You can always enhance science by
 - Adding or enhancing an instrument
 - Increasing scope or duration of mission
 - Augmenting other factors
- These types of enhancements will increase cost or risk
- You have to balance the increase in science against the increase in cost/risk
- NASA HQ is perceived as being inconsistent on this issue they often are seen as selecting the most science, but they don't want to risk cost overruns
- Examples
 - Decision in Phase A to descope two instruments, delete one year of science ops, and cut two data-analysis Co-Is in order to maintain reserves
 - Decision not to add "free" foreign instrument that would have enhanced science but at expense of cost and risk
 - Real value in identifying a mission in our original proposal that was within scope of available resources and then doing what it takes to stay there; balance against perception that we could have done more science
 - Comment from Associate Administrator about "just don't overrun the budget".

PI Is The Only One Looking Across Entire Mission

- Project Manager and his staff really understand the engineering, but are not experts in the science; this is especially the case early in development (Phase A, B), when many key decisions are made
- Engineering decisions can ripple back to science in subtle ways
- PI (or his/her designee) is the only person who looks across entire project and understands the potential impact of decisions on science
 - Includes obvious issue of technical impact that can affect science results
 - Also includes more-subtle issues of cost and schedule impact that can reduce ability to respond to later problems elsewhere
 - Requires strong presence of PI or of other science representation in all aspects of the project
- Examples
 - We descoped instruments that were not having any problems in and of themselves to address reserves issue in Phase A, because they were the most cost-effective descopes (dollar savings versus science lost)
 - We simplified planned instrument ops very early by negotiation between PI and s/c ops lead, in a way that had essentially no impact on science; ability to do this with only a small impact on science was not obvious to the engineering/ops team and was facilitated by discussion between only two people

Beware Of Changing Requirements

- Changes in requirements in mid-stream
 - Requirements changes of any kind increase cost work that needs to be done over, impact on schedule, retesting, etc.
- Science/engineering creep
 - Adding instrument or changing instrument design
 - Changing observing sequences
- Dance with the partner you brought to the dance
- Examples
 - Change that could have been implemented in comm system to increase data rate; we kept the data rate at values originally proposed (doing this made a strong statement to the team on resource allocation and requirements creep)
 - Decision to not implement a change in our "zone alerts" in response to an RFA (Request for Action) from the Standing Review Board; it might have been easier to implement than to fight, but we deemed it unnecessary and pushed back
 - Balance this against changes that truly are necessary such as decision to switch from Delta II (which we really had outgrown) to EELV (Atlas V) during Phase A.

Value Of Working Closely With The PM

- PI and PM need to be working together
 - Can't try to exert different philosophies on the team or provide contradictory direction
 - PI is not the PM; each has a different job, although they are inextricably intertwined
- Examples
 - PM really runs the day-to-day operations during development. As PI, my largest regular interaction was with the PM
 - PM (and DPM) felt free to argue with me on issues (usually in private); that went both ways

- "Do over" on Phase A due to conflict of interest identified during CSR review
- Government shut-down seven weeks before launch
- Major unknown risk from the Comet Siding Spring close approach to Mars (and MAVEN) four weeks after spacecraft arrival at Mars

Perspective On Being P.I.

- The PI is the only person who watches across the entire project, including science
- PI has ultimate responsibility for balancing cost, risk, schedule, and science; you can always increase science at the expense of the other factors, but this is a dangerous path
- There is no single approach to defining the PI role; each PI has to invent it from scratch. I had to figure out for myself what role I should play during each new phase of the project, and it has changed again (not gotten easier) during Phase E
- Being PI has dominated my life for more than a decade, in ways I could never have imagined
- One colleague told me that a flight project is like a marathon and you can't treat it as a series of 100-m dashes; at the same time, you have to do exactly that in order to hit each milestone as it comes up

P.I. Lessons Learned

- Getting selected for Phase A is largely about combination of science and technical implementation. Getting selected for flight is about low risk (cost, schedule, technical, science).
- Good communications is absolutely essential; this requires in-person interactions (i.e., lots of travel)
- Real heritage and absence of technology development are valuable in keeping cost risk down
- Resist requirements creep, on both science and engineering it will drive up cost and have a major hit on schedule; if you have a good mission to begin with, go with it.
- Being able to define and implement a space mission is an incredible responsibility and commitment, but it's also an incredible opportunity!

