Essential Elements of Successful Missions *"Managing Resources within the Mission Cost Cap" Presented by Joe Vellinga, (Ret.)* Lockheed Martin Stardust Program Mgr

From the paper:

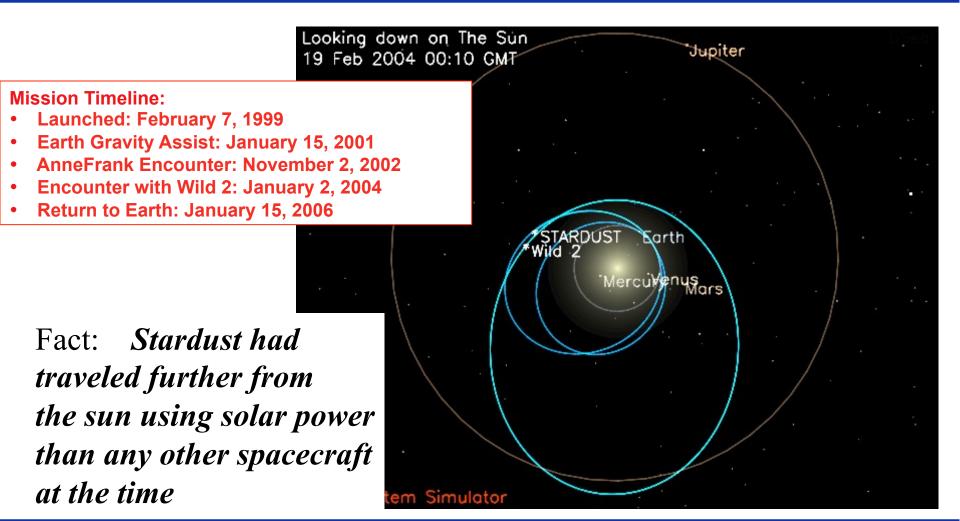
"How to Plan and Manage Reserves Effectively"

By Ken Atkins, Development & Launch Project Manager Jet Propulsion Laboratory Paper #1292 IEEE 04 Aerospace Conference Big Sky, Montana March 2004

Science Requirements (NASA Stardust Project)

Primary Requirement:	Collect 1000 comet particles >15µm at encounter velocity <6.5 km/s and return to Earth						
Secondary Requirements:	Collect interstellar particles for 150 days minimum and return to Earth.						
	Provide >65 images of Wild 2, having a resolution of at least 67 µrad/pixel, taken within 2000 km of the comet nucleus						
	Provide in-situ particle analysis for comet coma flythrough						
Tertiary Requirements:	Provide in-situ particle analysis for interstellar and interplanetary dust;						
	Collect comet coma molecules and return to Earth; Measure dust mass fluence, large particles and comet mass upper limit;						

Provide dust flux measurement of >10⁻⁹g to 1g particles



Stardust "Bringing Back Cosmic History"

Stardust Program Summary

Cost Cap: \$200 M including Launch Vehicle Cost Commitment: \$199.6 M including Launch Vehicle Cost Commitment: \$164.6 M without Launch Vehicle

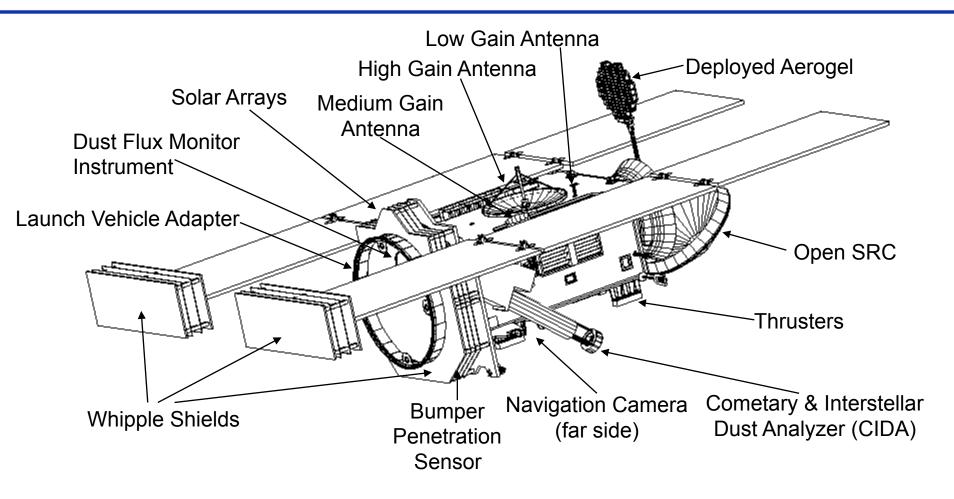
Launch: February 7, 1999

Mass: 385 kilograms (848 pounds) total,

254 kilogram (560-pound) spacecraft 46 kilogram (101-pound) sample return capsule (SRC) 85 kilograms (187 pounds) fuel

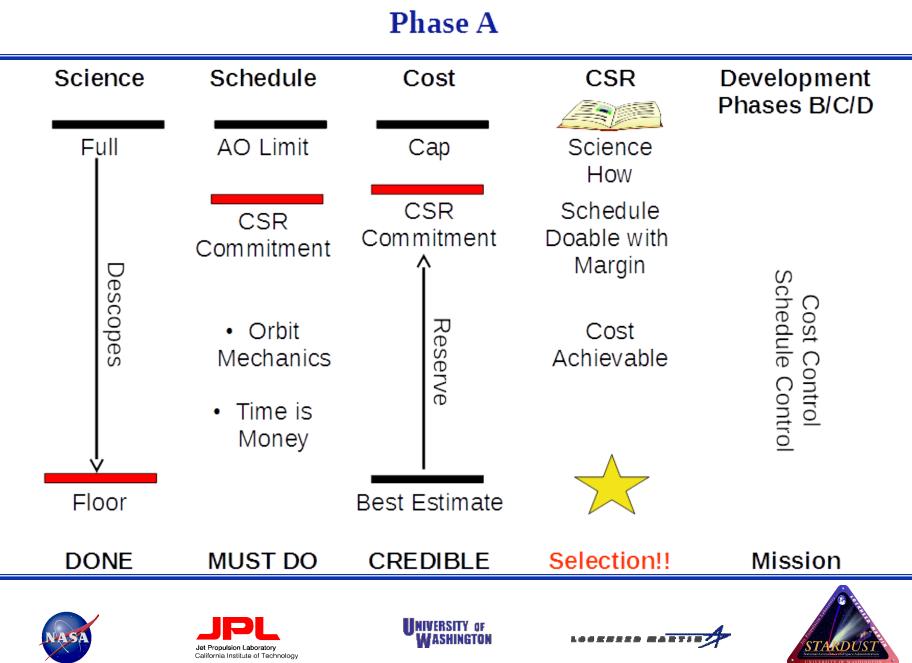
Science-related subsystems:

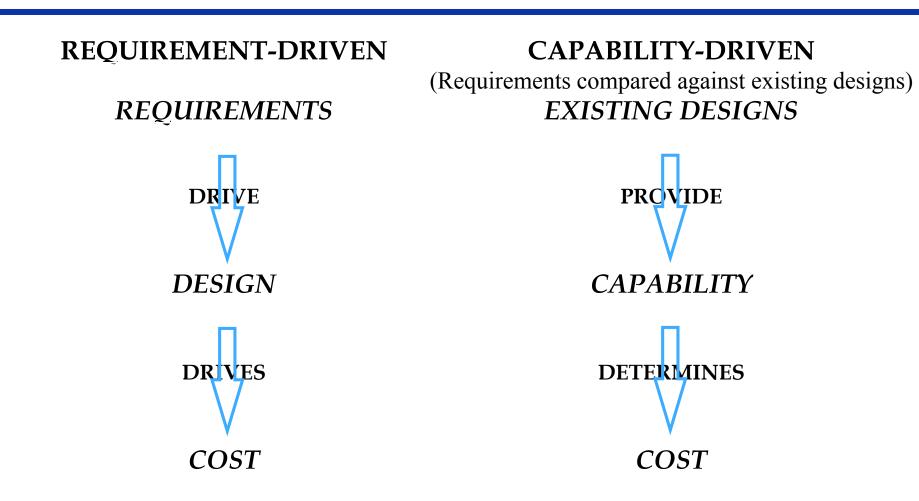
Aerogel dust collectors (cometary & interstellar) Sample Return Capsule (SRC) Comet and Interstellar Dust Analyzer (CIDA) Dust Flux Monitor (DFM) Navigation Camera (Nav Cam)



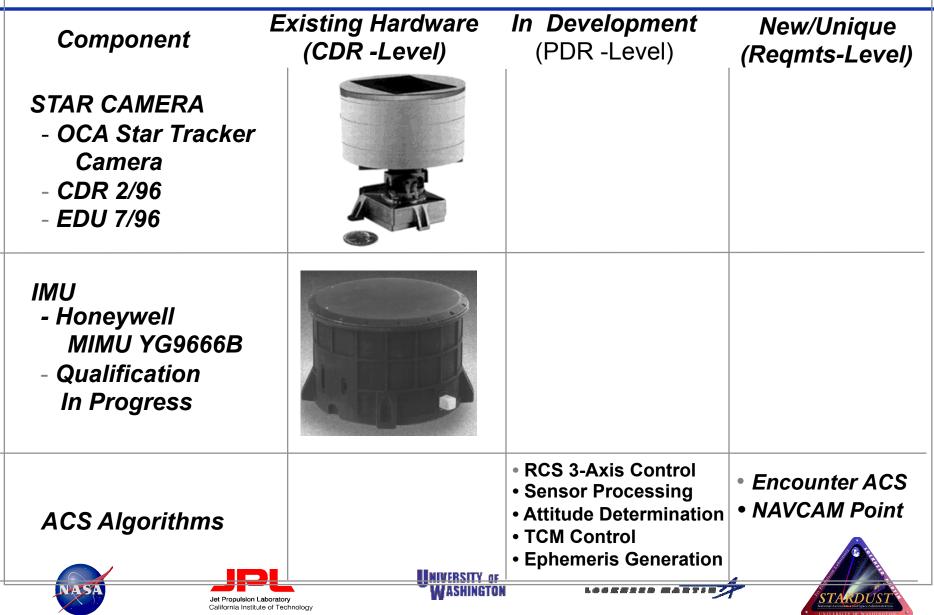
Stardust at Wild 2 Encounter

Rotating - 1 Solar Array 1st Motion





Cost Control Starts with Design-to-Cost Process



Attitude Control Capability vs. Requirements Matrix

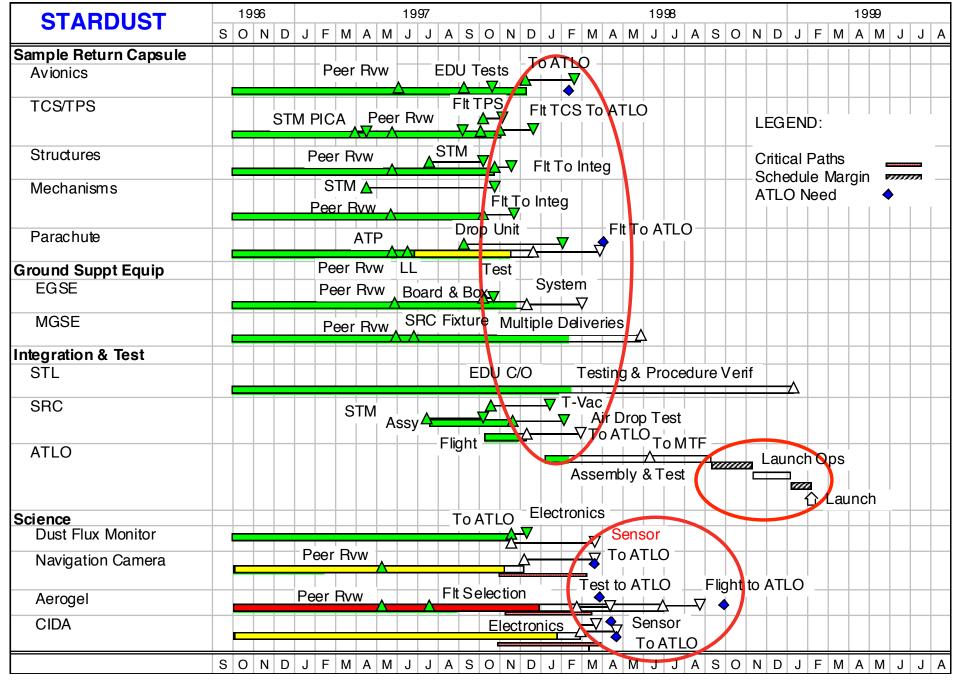
Elements of the Significant Risk List (SRL)

- Description of each risk item
- The area (e.g., system/ subsystem) that would deal with this risk
- Estimated cost to recover from the risk if no mitigation occurs (optionally - a description of what would need to be done to recover after the risk event takes place)
- Estimated probability of the risk occurring if no mitigation action occurs
- Any mitigation decision made (accept risk, mitigate now, or mitigate if some criteria is met)
- Any decision dates, if the mitigation decision is deferred
- Any mitigation costs
- Residual risk after mitigation, in terms of probability and cost of the risk occurring despite mitigation
- Whether the risk has been retired

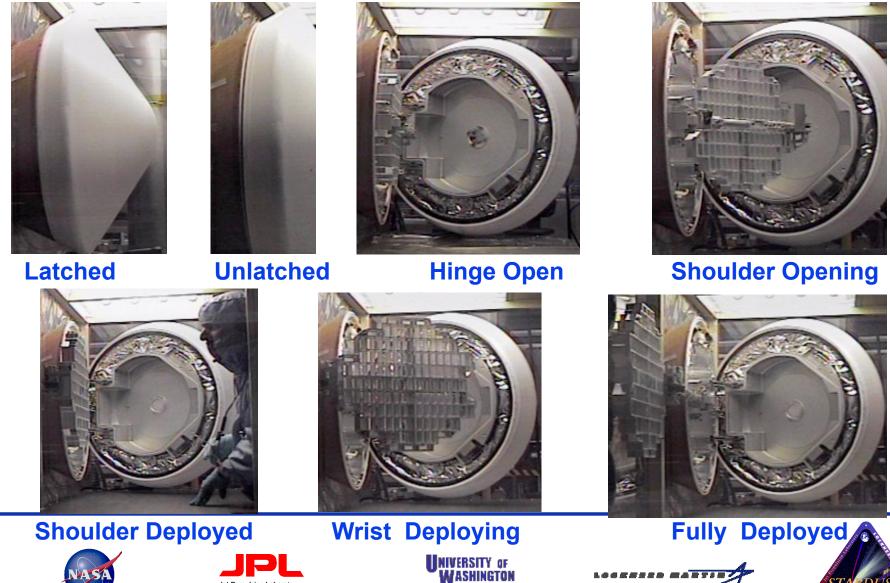
-- Risk Management Handbook for JPL Projects, D-15951, October 1998

Significant Risk List (SRL) from January 1997

Dick	Nome	Departmention /lustification		SSION RISK		Drob of	L.	Mitication		
Risk Item No.	Name	Description/Justification	Affected S/Ss	Impact	Severity of Occurrence /Failure (note 1)	P rob. of occurr- ence (note 2)	Fix	Mitigating Circumstances		
2	Late ATLO deliveries	Once the S /C is 'buttoned up', it will be difficult to remove and replace parts.	ATLO	Reduced ATLO test time decreases reliability	Minor	Medium	Aggressively work late deliveries. Have enough slack in ATLO schedule to support late remove and replace operations.	Thorough env tes program on assemblies. All assemblies require 100 hour of operation prior to ATLO		
4	Parachute Deploy	Drogue parachute G switch and timer. 7 year life for switch.	SRC	Single point mission failure	Total		Use redundant G switch and timer	Analysis of switches		
5	Thruster/ Valve Drive Failure	Thruster or drive valve fails. This may require use of non- optimal thrusters to maintain Attitude control and expending excess propellant.	ACS, Prop.	Reduced attitude control capability during encounter reduces reliability	Minor	Unlikely	Redundancy (non- optimal) and mission planning flexibility			
9	Occultation Period	Long autonomous operation required due to ground Ops unable to command S /C for up to 100 days.	All	Possible loss of mission	Total	Low	Extensive fault protection design and test			
12	Nav Cam Failure	Nav Cam fails and must rely on Star Camera to navigate to comet and earth return	AACS, Ops	Loss of imaging data.	Minor	Medium	Add redundant Na∨ Cam	Primary mission not threatened		
14	SRC Separation Dynamics	Separation of SRC exceeds RPM and tip-off envelopes, resulting in exceeding entry angle errors	SRC	Possible loss of mission	Major to Total	Low	No feasible fix	Margined, analyzed, and well tested design		
lotes:	1) Severity of	of Occurrence/Failure			2) Probabilit	of occurre	nce choose one:			
	Total	Mission loss-loss of particle s	samples		10%	Low–In all likelihood will not occur				
	Major	Major impact-significant loss			40%					
	- Or	Minor impa	otable		60%	al 🖉 🥂				
N	ASA	Jet Propulsion Laboratory			90%	Very high	nearly certain to occur	CT ADDIS		

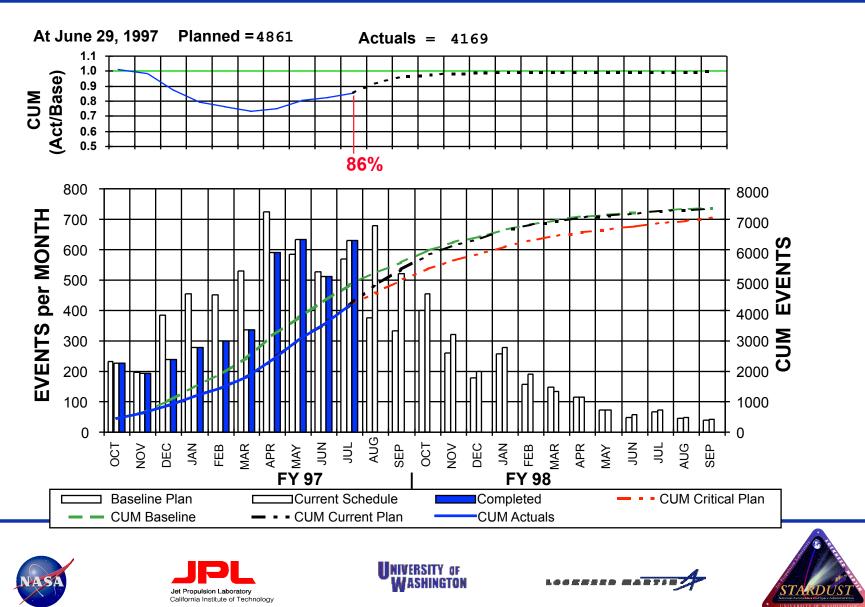

Significant Risk List (SRL) to Budget Change

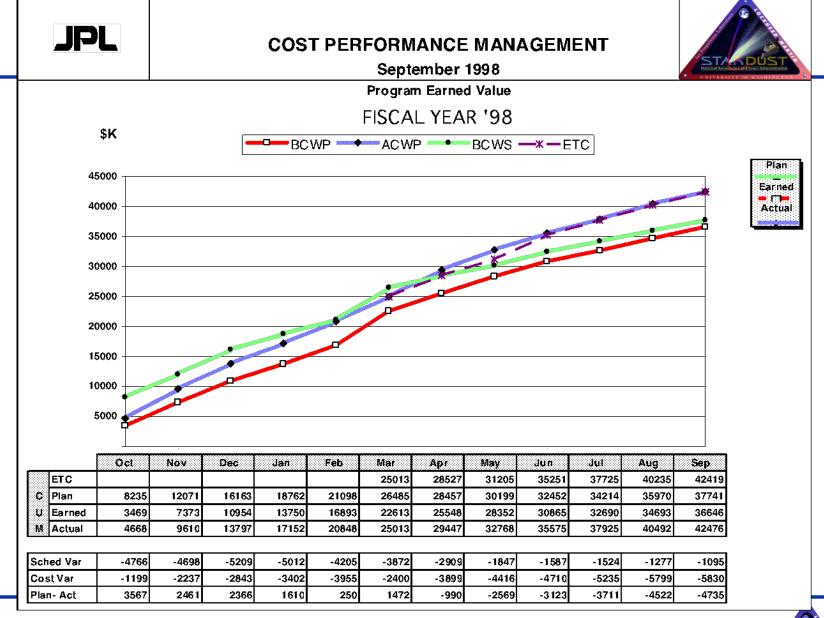
BUDGET CHAN	EST .SOFT LIENS					
	Reason	Date	Date			TOTAL
PROBABILITY FACTORS:						
HIGH = 100%						
MED = 60%						
LOW = 30%						
SOFT LIENS		Probability	Originator	FY98	FY99	C/D
Sim Software Resources		High	JPL	150		150
FSW Development Risk		High	JPL	300		300
Nav Cam Sleep Mode Will Not Work		High	JPL	10		10
Open NavCam ICD issues & misunderstandin	gs	High	JPL	10		10
Nav Cam Late Delivery (incl MDI Supplies)		High	JPL	250		250
IMU Leakage Problem		High	JPL	200		200
Aerogel ICD / Contam Requirements		High	JPL	300		300
CIDA Ground Loop		High	JPL	75		75
CIDA - PACI I/F Issues		High	JPL	250		250
Flight Spares Operating Time	ł	High	JPL	75		75
Analysis/Verifications (act or paperwork delay))	High	JPL	200		200
OCA Star CAM Development		High	JPL	75		75
Fuse Rel Questions		Med	JPL	300		300
PACI Board Issues		Med	JPL	200		200
C&DH Backplane Failure		Med	JPL	100		100
Nav Cam Rework/Repair Contingency		Low	JPL	55		55
TOTAL SOFT LIENS				2718	0	2718
						
				2020	0	2020
TOTAL MEDIUM PROBABILITY TOTAL LOW PROBABILITY				384	0	384
				18	0	18
TOTAL WITH PROB. APPLIED + Proc O/H	<u> </u>			2421	0	2421


Reserve/Lien List - Mar. 30,1998

BUDGET CHANGE LOG					ESTIMATED LIENS				DEFINITIZ			
	Reason	Date	Account	FY 97	FY98	FY99	TOTAL	FY 97	FY98	FY99	TOTAL	STATUS
TOTAL PHASE C/D RESERVES					12753	0	12753		12753	0	12753	
JPL Project (P)					8947	0	8947		8947	0	8947	
LMA Flight System (FS)					3806	0	3806		3806	0	3806	
LIENS												
EPS Test	R/R	Aug-97	LMA Contract		-150		-150		-150		-150	In Dec MPM Plan
LMA ETC	O/R	Oct-97	LMA Internal		-3806	0	-3806		-3806	0	-3806	In 98 Plan
JPL ETC	O/R	Oct-97	JPL Internal		-626		-626		-626		-626	In 98 Plan
Nav Cam Radiator, etc	C/S	Nov-97	LMA Contract		-37		-37		-37		-37	No Cost Change
SRC Avionics Shock Isolation	O/R	Nov-97	LMA Internal		0		0		0		0	In ETC Plan
Picture Frame for ATLO	R/R	Nov-97	LMA Internal		0		0		0		0	In ETC Plan
Solar Array Diode Addition for Shadowing	C/S	Nov-97	LMA Contract		-213		-213					
Aerogel Recovery	O/R	Nov-97	JPL 51100		-432		-432		-432		-432	In 98 Plan
CIDA Parts	R/R	Dec-97	JPL 60006		-32		-32		-32		-32	Incurred Dec-97
CIDA Mass/Thermal Simulator	C/S	Dec-97	LMA Contract		-85		-85		-85		-85	Negotiated
Breakout Boxes	R/R	Dec-97	LMA Contract		-83		-83		-83		-83	In Feb MPM Plan
Aerogel Spectrometer	C/S	Feb-98	JPL 51200		-177		-177	-177			-177	In Feb MPM Plan
Feb LMA Cost Over Reserve (541K)	O/R	Feb-98	LMA Contract		-577		-577					Noted
HARD LIENS FY98					-6218	0	-6218		-5429	0	-5429	
Reserves - Hard Liens					6535	0	6535		7324	0	7324	
JPL Project (P)					6535	0	6535		7324	0	7324	
LMA Flight System (FS)					0	0	0		0	0	0	
ATLO H/W Delivery Soft Lien (\$2M H/W to ATLO less spent)					-1555							
ATLO RESERVES (Less Hardware Delivery Soft Lien)					4980	0	4980	0	7324	0	7324	
TOTAL SOFT LIENS (From Soft Lien List)			0	-2421	0		0	-2421	0			
TOTAL UNENCUMBERED RESERVES (w/Soft Lien List)					4114	0	4114	0	4903	0	4903	
JE Propulsion Laboratory					WASHINGTON -			LOOREDED BATTING				STARDUST

Jet Propulsion Laboratory California Institute of Technology

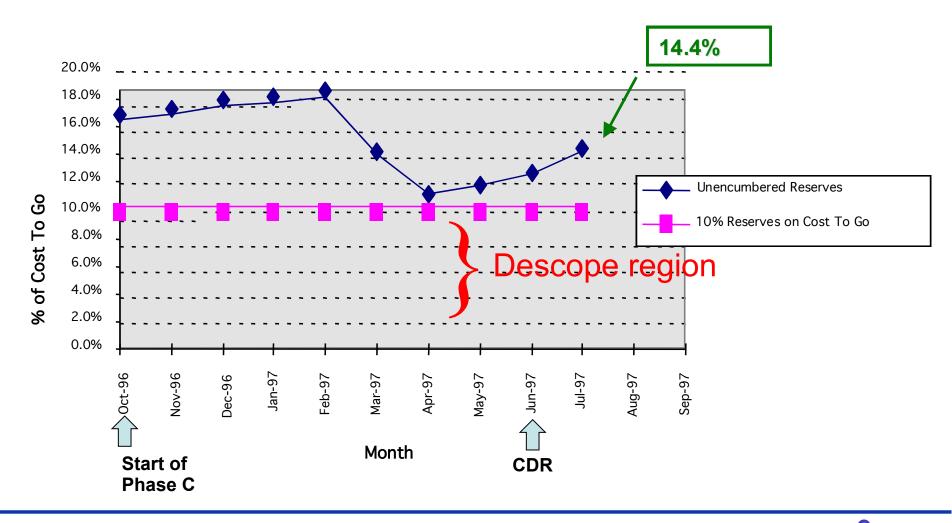

Flight Aerogel Installed at KSC



California Institute of Technology

Jet Propulsion Laboratory

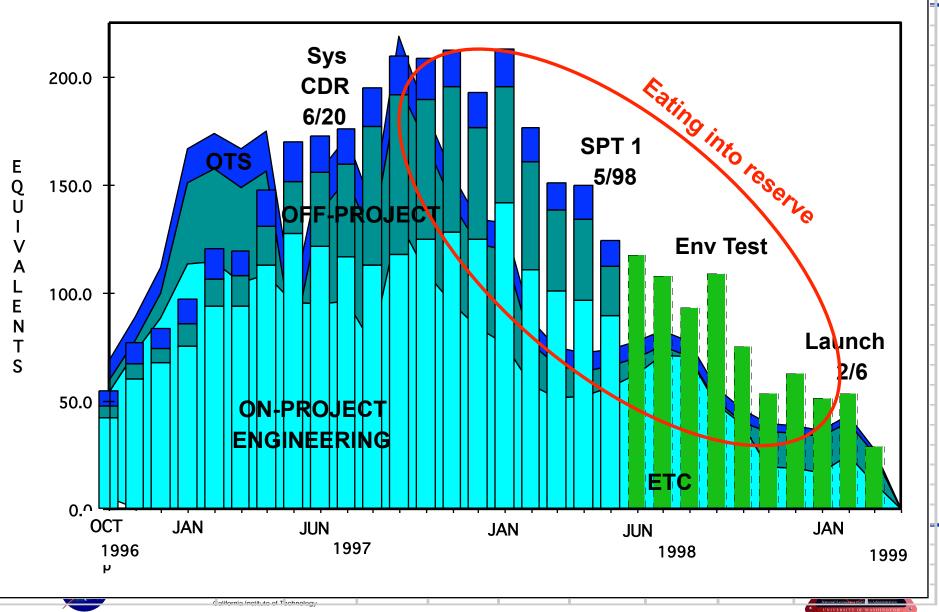
Schedule Performance Assessment Metric



17 of 23

UNIVERSITY OF WASHINGTON

Unencumbered Reserves vs. Cost-to-Go


UNIVERSITY OF WASHINGTON

18 of 23

LOGESSED BATTING

Human Resources – LM Staffing

Summary/Conclusion

- 1. Document Scope Hierarchy; Have good Descope List
- 2. Perform a C vs. R Review (CRR)
- 3. Populate the WBS -- Adjusted for Risk
- 4. Integrate & Link the Schedule. Determine the CP and Slack.
- 5. Load the Rates, etc., to get the Time-Phased Budget & EV Structure. Size tasks to be meaningful earned value
- 6. Update the SRL -- Carefully
- 7. Keep the Budget Change Log...It's your Controller.
- 8. Implement EV -- Crisply Focused for Effectiveness Feedback
- 9. Sweep for Threats -- Regularly
- 10.Release Reserve to Mitigate and Preempt with Cost-to-Go as "Governor."

100288888 848718

NO!!! Requirements Creep

- Mantra: "Do Not Allow Requirements Creep Camel to get his Nose Under the Tent"
 - PI, Don Brownlee, Gave Ken Atkins, Development Project Manager, Toy Camel at Ken's Retirement in Commemoration
- Turned Down Improvement 'Opportunities'
 - Addition of Volatiles Capture Mechanism Pushed by Science Team
 - Concept Study Done
 - Unknown Risks if Development Approved
 - TPS Instrumentation
 - Pushed by ARC Up Through NASA HQ
 - Unknown Additional Risk in New Heatshield that was Already Highest Risk
 in Program
- One Improvement Incorporated: Variable Density Aerogel @ No Additional Cost

When Cost is Committed, Requirements ARE FROZEN

Stardust was a Successful PI Led Mission

- Schedule: Phase B 9 months; Phase C/D 28 months to launch Ready to Launch of 1st Day of Window
- Launched On Budget
- How
 - No Creep (Requirements, Processes, Team)
 - Science Team Wanted Volatiles Added NO
 - ARC wanted Heatshield Instrumentation NO (twice)
 - Very Little Iteration
 - Adequate but Lean Staff (Project Office & LM)
 - Bounding Analyses
 - Adequate Design, Analyses, Tests
 - Offloaded People
 - EVM Straight forward & Integrated at LM & JPL

Mission Success

Science

- Wild 2 is a collection of materials that probably came from all regions of the young solar system; an odd mix of low and high temperature components
- "Calcium Aluminum Inclusions" or CAI's minerals that form at extremely high temperature; comet's rocks were predominantly formed close to the Sun
- Glycine, an amino acid used by living organisms to make proteins; suggests that all Earthlike planets obtain important pre-biotic molecules from space
- Pre-solar "stardust" grains, identified by their unusual isotopic composition
- Samples will be analyzed by hundreds of scientists for decades to come
- Wild 2 is very different; kilometer-sized deep holes bounded by vertical and even overhanging cliffs; flat topped hills surrounded by cliffs; spiky pinnacles hundreds of meters tall, no impact craters
- Comet Particle Impact rate changed in spurts, probably caused by entering and exiting "jets"
- Recognition
 - Popular Mechanics Breakthrough Award, Stardust, October 2006
 - Aviation Week Program Excellence Award, Stardust, November 2006
 - National Space Club Nelson P. Jackson Aerospace Award, Stardust, March 2007
 - Aviation Week Laureate Award, Stardust, March 2007
 - Rotary Stellar Award, Stardust Flight and Recovery Team, May 2007
 - Smithsonian National Air & Space Museum Current Achievement Award, Stardust Comet Sample Return Mission Team, April 3, 2008
