SELP Program Guide
Systems Engineering Leadership Program

SELP challenges systems engineers with rigorous, hands-on systems engineering developmental assignments and advanced leadership training beyond what they can experience at their home centers. Each participant will leave the program having been exposed to innovative government and industry-wide concepts as well as the agency’s perspective.
TABLE OF CONTENTS

OVERVIEW .. 3
Equal Opportunity .. 3

ABOUT THE PROGRAM .. 4
Learning Strategies ... 4
Learning Elements .. 5
Selection/Program Schedule .. 8
Funding ... 9

HOW TO PARTICIPATE .. 10
Eligibility Criteria .. 10
Candidate Nomination ... 11
Agency Selection Process ... 11
Application Materials ... 12

LEARNING AND SUPPORT NETWORK ... 14
System Map Interrelationships .. 14
SELP Program Management ... 14

RESOURCES .. 15
Systems Engineering Competencies ... 15
Studies and Readings ... 15
Systems Engineering Curriculum .. 16
Videos and Images ... 18

ATTACHMENTS ... 19
A. Memorandum of Understanding Temporary Assignment at the Jet Propulsion Laboratory 20
B. Ethics Statement ... 25
C. Selection Criteria .. 26
D. Current SELP Supervisor and Engineering Director’s Checklist ... 28
E. Engineering and Center Director Endorsement Letter .. 29
OVERVIEW

Systems Engineering Leadership Program (SELP)

NASA’s vision and mission necessitate that its workforce is ready and able to lead the world in space exploration, scientific discovery, technology development, and managerial excellence. NASA leadership has identified systems engineering as a critical core competency in enabling current and future mission success. While many NASA centers have hands-on systems engineering development programs that provide targeted development and systems engineering training locally, NASA identified the need for an advanced, agency-wide program that competitively selects high-potential system engineers. As a result, the agency established the Systems Engineering Leadership Program (SELP).

NASA’s Office of the Chief Engineer (OCE) has robust program/project management and systems engineering training programs within the Academy of Program/Project & Systems Engineering Leadership (APPEL). With over 60 in-depth courses and a commitment to engineering excellence, APPEL provides the ideal alignment for employees to gain the technical training needed to successfully compete for SELP.

SELP provides systems engineers with an agency-wide perspective, hands-on systems engineering developmental assignments beyond what they can learn and experience at their home centers, advanced leadership skills development, and exposure to innovative government and industry-wide systems engineering concepts.

Since its inception, SELP has achieved a consistent 90 percent success rate of individuals transitioning into more complex and difficult positions upon returning to their organizations after completion of the program.

Equal Opportunity

Diversity is a main component of NASA’s values and culture of excellence. SELP embraces participants from a variety of backgrounds, including age, color, disability, ethnicity, family, marital status, gender identity, language, national origin, political affiliation, race, religion, sexual orientation, socio-economic status, and veteran status, as well as all other characteristics that make each systems engineer unique.

This key principle serves as the practice and policy of program recruitment and selection. Additionally, SELP encourages the application and participation from individuals varying in life experiences, inventiveness, innovativeness, and creativity, as this is reflected throughout NASA’s overall body of work.

For more information, see NASA’s Non-Discrimination Regulations for Federally Assisted Programs (CFR) and the Nondiscrimination and Equal Opportunity in NASA-Assisted Programs and Activities.
ABOUT THE PROGRAM

SELP is a comprehensive program that provides leadership development, technical hands-on experience, leadership and technical training, benchmarking, mentoring, and coaching. The program’s basis for design is founded in *The Art and Science of Systems Engineering*, the *NASA Systems Engineering Behavior Study*, and the Behavior Competency Model. The behaviors exhibited by NASA’s highly valued systems engineers fall into five broad themes with associated competencies and their observable behaviors: leadership, attitudes and attributes, communication, problem solving and systems thinking, and technical acumen. Strategic thinking and political savvy are two additional leadership skills identified by NASA’s follow-on study of technical executives and are also covered in SELP.

The design of SELP is unique in that it incorporates “brain-friendly” learning techniques. Neuroscience has provided a wealth of information that has improved our understanding of how people learn, grow, and develop, and what factors enable or inhibit that learning. The SELP design is continually adapting to ensure NASA’s investment in learning works with the brain and not against it, resulting in greater retention and return on investment.

Learning Strategies

1. **Leadership Development:**
 Leadership development workshops are held to support the acquisition and refinement of critical leadership skills and abilities. The Leadership Choices Model forms the core of the leadership development strategy for SELP. This model focuses on enabling participants to gain clarity about their own leadership goals and objectives and to clearly align them with the mission and the goals of NASA in a way that engages others. It then helps participants define the results they are committed to achieving and enables them to achieve these goals and build connections with others.

2. **Assessments:**
 Assessment instruments are used to help participants gain a greater understanding of their strengths as areas for development. Unique to SELP is a NASA Systems Engineering 360 Assessment Instrument developed from the systems engineering behavior study that helps participants understand how extensively and effectively they are applying these systems engineering behaviors.

3. **Leadership Training Workshops:**
 Training in SELP focuses on leadership, attitudes and attributes, communication, political savvy, problem solving, and systems and strategic thinking. Depending on the unique needs of each class, training courses are provided as a part of each leadership workshop.
4. **Coaching:**
 The participant’s assessment results are used to form the basis for their leadership development strategy and coaching goals throughout the SELP year. Certified professional coaches work with participants during their developmental program to ensure successful transition back to their home centers and new responsibilities.

SELP Learning Elements

1. **Developmental Assignments:**
 Hands-on developmental assignments are a core requirement of SELP that enables participants to gain greater understanding of systems engineering, and expand the application of their systems engineering knowledge and skills. SELP is different from other NASA developmental programs in that the participant does not identify their own developmental assignment. Assignment matching is done by SELP Advocates using a multi-part process that ensures assignments meet the participant’s developmental needs.
 Part I: Participants identify the competencies they need to develop to meet their next level of growth against the competencies available in the developmental assignments.
 Part II: Advocates use the results of the matching process as the first step in identifying the assignments that would best provide the experience needed by the participant and then assess participants against six additional dimensions—life cycle phase, mission, level (e.g. subsystem, instrument, system, vehicle), project level (e.g., task, project, element, program), leadership experience, and human or robotic—that would broaden and expand the participant’s overall experience.
 Advocates ensure participants are placed in “stretch” assignments: areas where they have little or no previous experience and would expand their understanding of systems engineering and NASA’s engineering culture. One participant noted, “I am still amazed that the assignment-matching group was able to identify a suitable assignment based on a short interview and application form. My assignment fully addressed the gaps in exposure to the rest of the agency and how large programs operate.”

2. **Technical Training:**
 Aside from systems engineering-oriented problem solving assignments, systems engineering and other classroom technical training is not a formal part of SELP. Participants are expected to have the pre-requisite or equivalent courses upon entering SELP. Little time is available for additional courses during the program year, but participants can sign up for additional APPEL courses or take advantage of center courses as needed for their assignment and as time permits.

3. **Center Visits and Outside Benchmarking:**
 Benchmarking with other NASA centers and outside organizations to expand the participant’s understanding and awareness of effective systems engineering and leadership is part of each leadership workshop.
4. Mentoring and Job Shadowing:
All participants are assigned a mentor to guide them in their developmental assignment. Participants are also encouraged to shadow other center leaders as time permits to learn more about their assignment centers and different leadership styles.

5. Jet Propulsion Laboratory Participants
Participants from the Jet Propulsion Laboratory (JPL), please refer to the following table for special information regarding your participation.

<table>
<thead>
<tr>
<th>Element</th>
<th>From NASA to JPL</th>
<th>From JPL to NASA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Temporary Duty (TDY) & Program Travel</td>
<td>Funded by OCE</td>
<td>Task order funding provided by JPL to OCE</td>
</tr>
<tr>
<td>Salary and Benefits</td>
<td>Funded by Home Center</td>
<td>Funded from JPL burden account. Cannot use funds provided by OCE</td>
</tr>
<tr>
<td>Assignment Travel</td>
<td>Funded by OCE</td>
<td>Can be funded by the assignment center through invitational travel orders or JPL burden account</td>
</tr>
<tr>
<td>Ethics Out Briefing</td>
<td>Contact your Ethics Office for an out brief</td>
<td></td>
</tr>
<tr>
<td>Forms</td>
<td>Memorandum of Understanding (MOU) for Temp. Assignments to JPL & NASA SELP Ethics Statement</td>
<td></td>
</tr>
</tbody>
</table>

JPL is a Federally Funded Research and Development Center (FFRDC) operated for NASA by the California Institute of Technology (Caltech). Because of its special status, the JPL may have access to proprietary information to which NASA has no right of access. The JPL has privacy rights similar to those of any contractor. Because of the possible ethics issues that might arise in the course of an assignment of a NASA civil servant to the JPL, special arrangements have been made by the SELP. These arrangements were created through the work of the NASA Office of the General Counsel at NASA Headquarters, the chief counsel of the NASA Management Office (NMO), and attorneys for Caltech.

While the nature of the ethical issues themselves is beyond the scope of this paragraph, it forms the basis of a special written agreement between NASA and Caltech and of a special ethics briefing that each SELP participant who is detailed to the NASA JPL must obtain. Questions about specific ethical issues should be brought to an ethics officer (attorney) at any of the NASA centers, the JPL NMO, or the Office of the General Counsel at NASA Headquarters.

Specific procedures for SELP participants assigned to the NASA JPL are outlined below. There are no special requirements, except for the normal SELP program requirements, for JPL employees who are assigned by the SELP to NASA centers.

NASA civil servants who are assigned to the JPL by the SELP must prepare two documents in addition to the documentation that is required of all participants:
1. The SELP participants assigned to JPL must complete the document entitled **Memorandum of Understanding (MOU) for Temporary Assignment at the Jet Propulsion Laboratory of NASA Employee Under NASA’s Systems Engineering Leadership Program** [Attachment A]. Completion of this document entails filling in the blanks labeled in all-caps according to the specific details of the temporary assignment. Once completed and returned to the SELP staff, the document will be signed by officials from NASA and Caltech. The participant does not sign this document.

2. The second document is entitled **NASA SELP Ethics Statement** [Attachment B] and must be signed by the participant. The ethics statement is a promise by the participant to obtain an ethics briefing from an ethics officer at the participants home Center with participation from the Chief Counsel’s office at the JPL NMO. Both documents should be returned to SELP staff when complete.

Instructions for completing the form entitled “Memorandum of Understanding (MOU) for Temporary Assignment at the Jet Propulsion Laboratory of NASA Employee Under NASA’s Systems Engineering Leadership Program” are given below. The MOU form has been designed to allow you to “fill in the blanks” in a simple, intuitive manner. Questions that were asked by previous SELP program participants were recorded as a set of Frequently Asked Questions (FAQs) and are listed below. The FAQs are expected to be updated each year as a result of new inputs.

Frequently Asked Questions regarding JPL:

1. Does “LENGTH OF ASSIGNMENT” include the time needed for travel and transportation of personal belongings and family members to and from the duty station?
 Yes. The length of assignment should be designed to encompass all SELP program activities that are directly related to the new work assignment.

2. Does “LOCATION WHERE THE NASA EMPLOYEE WILL WORK” always mean "NASA JPL, Pasadena, CA?"
 No. In cases where the job assignment requires one or more duty stations instead of, or in addition to, the JPL, list each of the duty stations.

3. What level of detail is expected for "NAME OF INTERNAL ORGANIZATION WITHIN JPL WHERE THE NASA EMPLOYEE WILL WORK AND A DETAILED DESCRIPTION OF THE NASA EMPLOYEES JOB ASSIGNMENT"?
 You should write a paragraph that includes the name of the project, the name of the JPL project organization, the job title(s), and a reference to any known products.

4. What are the "important" parts of this MOU, or to what should I give the most attention?
 These questions will be answered during an ethics briefing that you will schedule with the ethics official from your home center. That ethics officer, in cooperation with the JPL NMO Chief Counsel, will explain the agreement and answer all your questions prior to your beginning the assignment at JPL.
5. Is there anyone that I need to contact when I arrive at JPL to begin the assignment?
 In addition to meeting with the JPL SELP Advocate, you should visit the NMO Chief Counsel’s office and meet the staff. You should ask the staff how to obtain your copy of the rules and policies that govern the internal operations and management of Caltech/JPL that is referenced in the MOU.

6. What if I have other questions?
 Feel free to contact the SELP staff with any questions.

2016-2017 Selection Schedule (*Dates are subject to change*)

<table>
<thead>
<tr>
<th>Month</th>
<th>Program Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2016</td>
<td>Release SELP Program Call (See Call for Nominations Letter for current schedule)</td>
</tr>
<tr>
<td>April 2016</td>
<td>Nominations and Assignments Due</td>
</tr>
<tr>
<td>June 2016</td>
<td>Candidate Interviews and Participant Selection</td>
</tr>
</tbody>
</table>

Program Year Schedule (*Dates are subject to change*)

<table>
<thead>
<tr>
<th>Month</th>
<th>Program Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 2016</td>
<td>Orientation Workshop – Coaching Begins</td>
</tr>
<tr>
<td>August 2016</td>
<td>Developmental Assignments Can Begin (6-9 months, over 18 months)</td>
</tr>
<tr>
<td>October 2016</td>
<td>Leading for Results</td>
</tr>
<tr>
<td>January 2017</td>
<td>Leading Through Power Dialogue and Collaboration</td>
</tr>
<tr>
<td>March 2017</td>
<td>Leading Through Powerful Communication</td>
</tr>
<tr>
<td>May 2017</td>
<td>Leading in a Dynamic Environment</td>
</tr>
<tr>
<td>July 2017</td>
<td>Leading With Presence</td>
</tr>
<tr>
<td>September 2017</td>
<td>Using Your Leadership Voice</td>
</tr>
</tbody>
</table>
SELP Funding

Centers are responsible for funding:
Participant’s salary
• Travel to/from the interview
• Travel to/from orientation
• Training and associated travel that is not part of SELP workshops
• Additional trips home, above the allowed quarterly trip
• Project travel required for participants assigned to their center

The OCE funds:
All other program travel and training for participants, including NASA employees assigned to JPL. Not all reimbursements allowed by the Federal Travel Regulations (FTR) are covered by SELP. (Note: Items covered in the FTR that are not reimbursable by SELP include commuting mileage and costs, maid services, dry cleaning and laundry, and rental cars.)

JPL Participants:
JPL is responsible for funding all costs associated with their employees’ participation in the program as noted above, with the exception of employee project travel required for participants assigned to their center.
HOW TO PARTICIPATE

SELP participants are identified using a rigorous nomination and selection process. Every two years, NASA’s Chief Engineer distributes a call for nominations to all NASA centers. Center leadership identifies strong candidates for the program and submits the appropriate nomination forms, which are reviewed and processed by the SELP selection committee.

NASA and the centers gain the greatest return on investment when nominees are selected as part of the center’s strategic mid- to long-term investment. This investment is only successful when a center’s systems engineering needs are met, which means that upon return, the participant is placed in a position where the learning experience they gained in the program is quickly applied to meeting essential center needs.

Candidate Eligibility

SELP candidate criteria:
• Full-time, permanent GS-13 to GS-15 NASA employee or a senior systems engineer at JPL.
• Bachelor’s degree in engineering or Specialties of Aerospace Technology (AST) equivalent.
• Willing and available to leave their home center and take on an assignment at another NASA center for six to nine months.

Experience needed to be successful in SELP:
• The participant is an employee who understands and has exposure to a breadth of systems engineering competencies as defined by APPEL.
• The participant has experience applying systems engineering principles on one or more projects or programs.
• The participant is at least APPEL Proficiency Level II.
• The participant has taken one or more of the recommended systems engineering APPEL trainings, including: Foundations of Aerospace at NASA, Project Management and Systems Engineering, and Fundamentals of Systems Engineering, or equivalent courses.

Additional candidate considerations:
Nominees for SELP must be individuals who have the experience and opportunity to take advantage of a developmental assignment away from their home center for six to nine months. Family obligations and current assignment requirements and timing should be taken into account to determine the optimal window of participation in this program. Participants in SELP engage in very demanding assignments and development activities. It is impossible for an individual to be successful in this program unless they are released completely from their home center obligations.

There is a significant amount of preparation necessary for the participants to transition to their developmental assignments. Home supervisors can best ensure project continuity and support participant assignment transition by arranging early for the transfer of responsibilities from these participants to the individuals who will be acting for them while they are away. A minimum of two weeks is recommended.
Candidate Nomination

Before identifying candidates, centers should consider the systems engineering knowledge, skills, and abilities they need to successfully run their programs in the next 18 to 24 months. Center engineering leadership is encouraged to consider the following questions when selecting nominees for SELP:

- Why are you nominating this person for SELP at this time in their career?
- In your opinion, why is SELP the best option for the candidate?
- What specific learning gaps does SELP fill for this person?
- What unique learning and experience will this person gain from SELP that will help them do a better job?
- What systems engineering challenges will your center be facing in the next 18 to 24 months?
- What knowledge, skill, and/or experience does this person need to bring back that will help support these challenges?

The competitive process ensures that:

- Participants have demonstrated the leadership behaviors and aptitude that NASA identifies as critical to becoming an expert systems engineer, along with demonstrated technical/discipline capabilities.
- The most qualified nominees are selected for this opportunity when the learning will have the greatest impact on the employee and provide the greatest value to NASA.
- Participants have the experience and attitude to be successful in the program.
- There is an appropriate assignment available to meet the participant’s needs.
- Participants have top-level center engineering leadership support needed to be successful in the program.
- Participants are placed in a position that quickly applies their SELP learning when they return to their home center to ensure maximum transfer of learning and return on investment.

Agency Selection Process

Center engineering directors or their designees and members of the Safety and Mission Assurance community serve as the selection panel for SELP participants. Participants are chosen using a four-part competitive selection process:

1. Center competition, nomination, and endorsement by center engineering leadership and the center director.
2. Rating and ranking of applications by the SELP selection panel based on specific criteria to ensure applicant has met the program requirements and has the background to be successful in SELP.
3. Selection panel interview of qualified applicants ensure applicant has the demonstrated leadership behaviors and aptitudes of highly successful systems engineers.
4. Advocate matching of selected applicants to available developmental assignments.
Application Materials

Below are the detailed program requirements, call for participants, nomination forms, and other pertinent materials to nominate candidates for SELP. The call and application materials are scheduled for release every other year.

Program Requirements:

- Provide a comprehensive development program that provides for leadership and technical development, training and benchmarking, coaching, and mentoring.
- Provide opportunities for employees from across NASA to participate in a year-long developmental program. Participants are to be GS-13 or GS-15 engineers or AST equivalents. Participants from the JPL must be Senior Systems Engineers.
- Provide a process that ensures the selection of high potential participants who have proven technical/discipline capability and who have demonstrated key leadership capabilities and behaviors. Individuals selected should be nominated by their Center Director and Center Engineering Director and expected to lead higher-level or more complex efforts in the next 18 to 24 months, not employees who are merely available. The SELP competitive process ensures that:
 - Participants have demonstrated the leadership behaviors and aptitude that NASA identifies as critical to becoming an expert systems engineer (see Systems Engineering Leadership Behavior Study), along with demonstrated technical/discipline capabilities (see APPEL Systems Engineering Technical/Discipline Competency Model and APPEL Systems Engineering related courses).
 - The most qualified nominees are selected for this opportunity at the right time in their career, when this learning will have the greatest impact.
 - Participants have the experience and attitude to be successful in the program.
 - There is an appropriate assignment available to meet the participants’ developmental needs.
 - Participants have the top-level center engineering leadership support needed to be successful in the program, and to be placed in a position that quickly applies this learning upon return to the center to ensure maximum transfer of learning and return on investment.
- Ensure that the program offered provides an integrated learning approach that allows participants to:
 - Gain hands-on developmental experience outside the participant’s home center that will broaden and improve their discipline knowledge, skills, and abilities to lead complex agency-wide programs and projects;
 - Obtain development and coaching needed to enhance key leadership skills and abilities and improve or adopt behaviors that NASA has identified as critical to becoming a highly effective systems engineer;
 - Obtain critical thinking, systems thinking, judgment, and decision making skills, through training and case studies, that are necessary to make system trade-offs to optimize program and project effectiveness;
 - Create an agency-wide learning community and network of systems engineers across NASA;
 - Obtain mentoring by top NASA systems engineers, both at their home centers and at their developmental assignments;
 - Improve leadership effectiveness through coaching and feedback;
 - Provide interactions and learning from key NASA and outside leaders;
 - Provide technical training before the start of assignments that are critical to success;
 - Benchmark with other NASA centers and world-class outside systems engineering organizations.
• Ensure centers have individual development plans (IDP) for each participant. Identified experienced center systems engineering advocates will perform a gap analysis for each participant and match participants with the appropriate developmental assignment.

Nomination Forms:
• SELP Nomination Form – Log into the NASA Electronic Forms Portal, search for form 1781 and complete.
 • Form NF 1781A: SELP Assignment Summary – To be completed by the SELP advocate. Log into the NASA Electronic Forms Portal, search for form 1781A and complete.
 • Form NF 1781B: SELP Participant Summary – Checklist for the SELP candidate and to be filled out by the candidate and supervisor. Log into the NASA Electronic Forms Portal, search for form 1781A and complete.

Nomination Supplements:
• Current Selection Criteria [Attachment C] – Identifies the criteria used by the SELP Selection Panel to rate and rank nominee applications.
• Current SELP Supervisor and Engineering Director’s Application Checklist [Attachment D] – Identifies items for consideration throughout the participant nomination process to determine the best candidates for SELP. This checklist should not be included in the final application package submitted to NASA Headquarters.
• Current Engineering Director and Center Director Nomination and Endorsement Template/Example [Attachment E] – Sample Word document for participant endorsement and nomination. Please complete and return with nomination materials.

Please check with your Center Training Office for center-specific application requirements and schedule.
LEARNING AND SUPPORT NETWORK

SELP participants benefit from comprehensive training and development aligned with a sophisticated learning and support network. This model is essential to NASA mission success and return on investment for the program and its class.

System Map Interrelationships

<table>
<thead>
<tr>
<th>POSITIONS</th>
<th>RESPONSIBILITIES & RELATIONSHIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCE/SELP Program Management</td>
<td>Defines learning needs, establishes program goals, and coordinates with the SELP Board—the Engineering Management Board (EMB). Designs, delivers, and assess program.</td>
</tr>
<tr>
<td>EMB</td>
<td>Provides leadership guidance, and identifies and endorses high-potential candidates.</td>
</tr>
<tr>
<td>Center Directors</td>
<td>Coordinates with the EMB on the goals and strategy for using SELP to develop center employees.</td>
</tr>
<tr>
<td>Home Supervisors and Mentors</td>
<td>Identifies potential candidates, provides input into their developmental assessment, and defines how employee will contribute upon return.</td>
</tr>
<tr>
<td>Advocates</td>
<td>Appointed by the EMB. Coordinates candidate identification, mentor participants, and provides status updates to EMB.</td>
</tr>
<tr>
<td>Center Training Coordinators</td>
<td>Coordinates local candidate selection with all parts of the system.</td>
</tr>
<tr>
<td>Participants</td>
<td>Responsible for learning, performing assignments, and communicating their status with home center. Accountable for returning to their centers with abilities and readiness to perform at the next highest level.</td>
</tr>
<tr>
<td>Assignment Supervisors and Mentors</td>
<td>Identifies potential developmental assignments. Responsible for developing the participants while on assignment.</td>
</tr>
<tr>
<td>Consultants and Trainers</td>
<td>Responsible for training and developing participants and providing advice on recommended program changes.</td>
</tr>
<tr>
<td>Coaches</td>
<td>Provides one-on-one and group coaching to participants.</td>
</tr>
<tr>
<td>Outside NASA</td>
<td>Shares program information and findings with outside organizations.</td>
</tr>
</tbody>
</table>

OCE SELP Program Management

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ralph Roe</td>
<td>NASA Chief Engineer</td>
</tr>
<tr>
<td>Dawn Schaible</td>
<td>NASA Deputy Chief Engineer, SELP Sponsor</td>
</tr>
<tr>
<td>Roger Forsgren</td>
<td>Director of APPEL, SELP Program Director</td>
</tr>
<tr>
<td>Jon Holladay</td>
<td>NASA Engineering & Safety Center (NESC) Systems Engineering Tech Fellow</td>
</tr>
<tr>
<td>Kevin Magee</td>
<td>SELP Program Manager</td>
</tr>
</tbody>
</table>
SEL P draws upon a number of reports, studies, and models to develop program participants, and provides a variety of additional learning content and resources.

Systems Engineering Competencies

Competencies are the combination of knowledge, skills, and abilities that contribute to individual and organizational performance. The APPEL developmental framework is based on a rigorous set of competencies that practitioners should have in order to perform their jobs. These competencies define the breadth and scope of the discipline and facilitate personal development and assessment of individual knowledge and capabilities.

These competencies were derived from many sources, including extensive interviews with several hundred highly successful project managers and system engineers at NASA. The resulting competencies were vetted with both internal and external organizations to ensure completeness and accuracy. Since the competencies form the foundation of the development program, they are under configuration control and are reviewed and updated as appropriate.

A key step for NASA’s technical practitioners is to understand the requirements of their roles and the related competencies. APPEL seeks to help practitioners refine their competencies in order to reach the highest level of performance. The NASA Project Management and Systems Engineering Competency Model consists of 18 project management competency areas, 17 systems engineering competency areas, and 14 competency areas common to both the project management and systems engineering communities. Performance-level descriptions for each competency have been created to guide the overall development of individuals within the program/project and engineering disciplines. Visit APPEL’s PM&SE Career Development Framework to learn more.

Studies and Suggested Readings

- **Executive Leadership at NASA: A Behavioral Framework**
 Published in June 2010, this study was conducted to identify the behaviors and attributes exhibited by the agency’s most successful executives. NASA Systems Engineering Behavior Study
 Published in October 2008, this study was conducted to identify the characteristics or behaviors frequently observed in highly regarded systems engineers at NASA.

- **NASA Systems Engineering Behavior Study**
 Published in October 2008, this study was conducted to identify the characteristics or behaviors frequently observed in highly regarded systems engineers at NASA.

- **Executive Behavior Validation Study**
 Published in December 2011, this large-scale study was conducted to quantitatively analyze the behavioral framework developed in the Executive Leadership at NASA: A Behavioral Framework publication.
• **Recommended Reading List**
 SELP participants may be interested in these suggested readings in systems engineering, systems thinking, leadership, project management, and related disciplines.

Systems Engineering Curriculum

The emphasis of the SELP is on hands-on technical assignments at NASA field centers with various programs and projects. Prior to and during participation in the program, participants are expected to conduct objective analysis of their core systems engineering knowledge, understanding, and practice. The APPEL SELP coordinator assists participants with this assessment. Should a deficiency be identified in any major systems engineering concept, processes, policy etc., it is recommended that the participants obtain the necessary training through APPEL or another credible provider.

The APPEL Systems Engineering Curriculum is based on a development model or framework and defined systems engineering competencies. Course offering dates and locations are available on the APPEL Master Schedule.

Recommended SELP Prerequisite Courses:

- **Foundations of Aerospace at NASA**
 Addresses the meaning of working at NASA and the principles of technical excellence. Focuses on providing participants with a big picture overview of NASA, its history, mission, its governance model, and agency operations. Focuses on communication and team participation skills.

- **Project Management and Systems Engineering**
 Enhances proficiency in applying project management and systems engineering processes/practices over the project life cycle. Focuses on defining and implementing system projects and provides valuable insight for managing and leading project and technical teams.

- **Fundamentals of Systems Engineering**
 Introduces methods and techniques for a structured systems development process that proceeds from requirements to concept to production to operation, based on NPR 7123.1B and NPR 7120.5D. Focuses on the interfaces between the people, processes, and products. Equips teams with knowledge necessary to realize successful solutions.

Attendance In at least one prerequisite course required prior to applying for SELP.

Recommended SELP Courses:

- **Advanced Project Management and Advanced Systems Engineering**
 Focuses on advanced concepts of project management and systems engineering, and their integration in the management of all phases and facets of the project life cycle. Uses case studies to examine topics such as system architecting, performance, risk, cost, schedule, reliability and operability, stakeholder management, and acquisition strategies. Provides knowledge to realize project solutions and leverage project management and systems engineering roles and responsibilities defined in NPR 7120.5D and NPR 7123.1A.

Attendance recommended prior to or during SELP.
Additional APPEL Systems Engineering Courses:

- **Decision Analysis (DA)**
 Designed to provide the tools necessary to improve the quality of a factually based decision-making process for resolving technical issues at NASA.

- **Developing and Implementing a Systems Engineering Management Plan (SEMP)**
 Introduces the processes that support planning, development, and execution of a Systems Engineering Management Plan (SEMP). Includes how systems engineering deliverables are planned and managed. Participants experience systems engineering technical reviews and appreciate the value of these ‘gates.’

- **Earth, Moon, and Mars (EMM)**
 Introduces the remarkable discoveries of how these planetary bodies formed and the kinds of geologic processes that continue to operate on them today. Participants will also learn of the unique geologic challenges that the moon and Mars pose to future exploration.

- **Life Cycle Processes and Systems Engineering (LPSE)**
 Introduces systems engineering processes, NASA life-cycle phases, key technical reviews, and systems engineering management techniques. Helps participants realize the value of well-established systems engineering processes and deliverables.

- **Manned Mission and System Design Lab (MMSD)**
 Provides experience of conceptualizing and designing space missions to Mars or the moon. Provides an integrated view of space mission design and operations.

- **Requirements Development and Management (REQ)**
 Provides a foundation for the development and management of a project’s product requirements. Includes requirement best practices, which help project teams develop a product that delivers what is needed — on-time and within cost and expected quality.

- **Seven Axioms of Good Engineering (SAGE) A Case Study Course: Learning From Failure**
 Promotes good engineering design and project management decision making via case studies and discussion. Promotes critical thinking and improves decision making among engineers, technologists, project managers, and scientists.

- **Space System Verification and Validation (SSVV)**
 Demonstrates the processes, information, and tools necessary to implement a credible verification, integration and test program. Provides exposure to NASA and Department of Defense (DoD) standards, lessons learned, tools, and experiences in validation and verification.

The following required leadership and communications courses are provided to participants at leadership workshops during their SELP year. These courses are modified or changed based on an annual analysis of key leadership skills needed at NASA:

- Building Partnerships through Systems Thinking
- Crucial Conversations
- Leading Change through Effective Facilitation
- Leading Others through Coaching
• Business Acumen and Political Savvy
• Leading with the Brain in Mind
• Building a Reentry Strategy
• Driving Results

The SELP baseline set may be modified as influenced by strategic activities of the agency or newly established best practices.

Videos and Images

Watch videos of practitioners and former SELP graduates sharing their insights about systems engineering and view images from each class.

View the Systems Engineering playlist on APPEL’s YouTube channel.
View images from each class on APPEL’s Flickr page.
Read stories about SELP events and participants.
Attachment A: Memorandum of Understanding for Temporary Assignment at the Jet Propulsion Laboratory (JPL) of NASA Employee Under NASA’s SELP

Attachment B: NASA SELP Ethics Statement

Attachment C: Selection Criteria

Attachment D: Current SELP Supervisor and Engineering Directors Application Checklist

Attachment E: Engineering and Center Director Endorsement Letter
I. Purpose

This Memorandum of Understanding (“MOU”) is entered into by the National Aeronautics and Space Administration (“NASA”) and the California Institute of Technology (“Caltech”). The MOU establishes the terms and conditions for the temporary assignment of NASA employee (NAME OF NASA EMPLOYEE) to the Jet Propulsion Laboratory (“JPL”) for a period of (LENGTH OF ASSIGNMENT). Actual work experience will not exceed (LENGTH OF ASSIGNMENT). The authority for this MOU is 5 U.S.C. 4101 et seq., the Government Employees Training Act of 1958, as amended and 42 U.S.C. 2473 et seq., the National Aeronautics and Space Act of 1958, as amended.

JPL, run by a division of Caltech, is located at 4800 Oak Grove Drive, Pasadena, CA 91109. NASA Headquarters is located at 300 E Street, S.W., Washington, DC, 20546.

II. Background

As part of NASA’s Systems Engineering Leadership Program (“SELP”), participants engage in outside temporary work assignments in order to broaden their knowledge and increase their leadership skills. A temporary assignment to Caltech/JPL has been identified as a valuable developmental opportunity for (NAME OF NASA EMPLOYEE). This position will enable the participant to gain new perspectives in the field of systems engineering and, at the same time, will benefit NASA by building and retaining a skilled and effective workforce. (See NPD 3410.1 for benefits to NASA).

The scope of JPL’s work is defined in section C of Contract NAS7-03001 between NASA and Caltech (the “Prime Contract”). Caltech operates JPL as a NASA Federally Funded Research and Development Center to meet Government research and development needs that cannot be met effectively by existing Government resources or normal contractor relationships. JPL has a dual character; it is a NASA-owned facility as well as an operating division of Caltech staffed with Caltech employees. JPL as an institution encompasses a full spectrum of activities from basic research through the conduct and management of space flight missions.

The NASA employee will work at Caltech/JPL at (LOCATION WHERE THE NASA EMPLOYEE WILL WORK) where he/she will (NAME OF INTERNAL ORGANIZATION WITHIN JPL WHERE THE NASA EMPLOYEE WILL WORK AND A DETAILED DESCRIPTION OF THE NASA EMPLOYEE’S JOB ASSIGNMENT). This assignment will serve as a broadening experience to enhance the employee’s perspective and meet this/her developmental needs.
Caltech/JPL will serve as the sponsor for (NAME OF NASA EMPLOYEE) for the duration of the assignment. The sponsor will assign daily tasks to (NAME OF NASA EMPLOYEE) to ensure that (NAME OF NASA EMPLOYEE) has the opportunity to work on projects related to program goals and his/her developmental needs.

(NAME OF NASA EMPLOYEE) will interact with Caltech/JPL organizational staff at all levels. At the conclusion of the assignment, (NAME OF NASA EMPLOYEE) will prepare an SELP Final Program Report.

III. Responsibilities

Nothing in this MOU is intended to affect, alter, or change any terms or conditions of the Prime Contract between the parties nor is this MOU intended to, in any way, affect the respective rights and obligations between the parties as set forth in the Prime Contract. To the extent there is any inconsistency between this MOU and the Prime Contract, the terms of the Prime Contract shall govern. Any effort performed by Caltech/JPL in connection with this MOU shall be performed under the Prime Contract.

It is the intent of the parties in entering into this MOU that the following efforts will be undertaken, consistent with the Prime Contract:

NASA will use reasonable efforts to accomplish the following:

1. Assign (NAME OF NASA EMPLOYEE) to Caltech/JPL. While assigned to Caltech/JPL and performing services pursuant to this agreement, (NAME OF NASA EMPLOYEE) will remain an employee of NASA.
2. Retain sole responsibility for the payment of all salary, allowances, and benefits under applicable federal law and regulations. (NAME OF NASA EMPLOYEE) is prohibited from receiving any payment or other compensation from Caltech/JPL, including (but not limited to) such forms of compensation as meals, housing, personal laundry, time off, etc.
3. Retain responsibility for (NAME OF NASA EMPLOYEE) workers’ compensation benefits available for injuries arising out of the performance of his duties within the scope of this assignment. Caltech/JPL will not include (NAME OF NASA EMPLOYEE) under its workers compensation program.

Caltech/JPL will use reasonable efforts to accomplish the following:

1. Provide on-the-job training to (NAME OF NASA EMPLOYEE) during the term of this agreement.
2. Assign (NAME OF NASA EMPLOYEE) to various projects, as described in the Background Section above, during the assignment.
3. Provide (NAME OF NASA EMPLOYEE) with a sponsor for the duration of the assignment. The sponsor will work with (NAME OF NASA EMPLOYEE) to develop a general plan for the duration of the assignment, which will ensure that (NAME OF NASA EMPLOYEE) has the opportunity to work on projects related to SELP goals and
that meet his/her developmental needs.

4. Comply with the attached “Time-Keeping, Administration, and Evaluation Procedures.”

5. Provide appropriate office space, administrative, and logistical support for (NAME OF NASA EMPLOYEE), including communications access, normal and proprietary materials, storage, clerical support, office equipment, and supplies.

Both parties will be responsible for avoiding any conflicts of interest situations and to so instruct their respective employees.

IV. Schedule and Milestones

Caltech/JPL understands that (NAME OF NASA EMPLOYEE) is unavailable for work assignments on certain days due to required developmental program activities that will be specified by the SELP Director.

V. Financial Obligations

Financial obligations are governed by the Prime Contract.

VI. Liability and Risk of Loss

 Liability and Risk of Loss are governed by the Prime Contract.

VII. Intellectual Property and Export-Controlled Data

The parties do not intend that the activities performed under this MOU will result in inventions or the creation of new intellectual property, but if any result, the following will apply:

• Under federal law, (NAME OF NASA EMPLOYEE) remains a Government employee during the developmental training assignment. Any intellectual property developed by the Government employee pursuant to this MOU is governed by applicable federal statutes, regulations, rules, and policies.

• Subject to the U.S. Government’s rights and interests, Caltech shall retain exclusive title and all rights to inventions, copyright, and other intellectual property arising from conceptions or efforts of JPL employees or consultants in performing this MOU. The U.S. Government retains a right to use such inventions, copyrighted materials, or other intellectual property, royalty-free for authorized government purposes.

• Subject to U.S. Government rights and interests, NASA and Caltech shall hold joint title and rights in inventions, copyrights, and other intellectual property arising from the joint conceptions or efforts of both parties’ employees or consultants in performing under this MOU.

In the performance of this MOU, JPL and NASA may exchange or develop data, information, software, or other technology, which may be subject to the export control laws and regulations of the United States, including the International Traffic in Arms Regulations (ITAR), 22 C.F.R.
120-130 and the Export Administration Act Regulations (EAR), 15 C.F.R. 730-774). The parties agree to fully comply with all such laws and regulations in the performance of this MOU and each party will be responsible for obtaining export licenses or other export authority as may be required before exporting controlled data, information, software, or other technology to foreign countries or providing access to foreign persons (as defined in 22 C.F.R. 120.16).

In the event that JPL is requested by NASA to provide remote access accounts for its employees authorizing access to any JPL electronic library or server, JPL will require NASAs Export Administrator to certify that its employees requesting access are U.S. persons (as defined in 22 C.F.R. 120.15). During assignment under this MOU and while on the JPL premises and/or JPL’s computing network and resources, (NAME OF NASA EMPLOYEE) may have access to or otherwise be provided exposure to third party proprietary and/or otherwise protected data that may not normally be available to NASA under the Prime Contract. Such information and/or data shall be subject to and treated by (NAME OF NASA EMPLOYEE) in accordance with 18 USC 1905.

VIII. Key Personnel

The following personnel are designated the principal points of contact between the parties in the performance of this agreement:

NASA:
Roger Forsgren, Director
Systems Engineering Leadership Program

NASA Headquarters MS:
6G35
300 E. Street SW
Washington, DC 20546-0001
Roger.c.forsgren@nasa.gov
Tel: (202) 358-3662

Caltech:
(name of current Associate Director)
Associate Director for Flight Projects and MissionSuccess

NASA Jet Propulsion Laboratory, California Institute of Technology 4800
Oak Grove Drive
Pasadena, CA 91109
Tel: (818) 354-5037
(current email)@jpl.nasa.gov
IX. Term of Agreement and Modifications

This MOU becomes effective as of the date of the last signature below. The term of this agreement is \((\text{ACTUAL DATE OF BEGINNING ASSIGNMENT})\) through \((\text{ACTUAL ENDING DATE OF ASSIGNMENT})\), or until canceled by either party. Any modification to this agreement shall be executed, in writing, and signed by an authorized representative of each party.

X. Right to Terminate

Either party may terminate this agreement at any time. One week’s notice is preferred.

XII. Anti-Deficiency Act

All activities under or pursuant to this agreement are subject to the availability of appropriated funds, and no provision shall be interpreted to require obligation or provision of funds in violation of the Anti-Deficiency Act, 31 U.S.C. 1341.

XIII. Execution

The following individuals execute this agreement on behalf of Caltech and the Government, respectively.

Roger C. Forsgren
Director, Systems Engineering Leadership Program

NASA Headquarters
300 E. Street SW, MS: 6G35
Washington, DC 20546-0001
Tel: (202) 358-3662

Name of Current Associate Director
Associate Director for Flight Projects and Mission Success

NASA Jet Propulsion Laboratory, California
Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
Tel: (818) 354-5037
NASA SELP Ethics Statement

The following SELP Ethics Statement is required of NASA employees for SELP assignments at JPL:

I understand that as a condition of participation in the NASA SELP, I will consult with an ethics official in the Chief Counsel’s Office of my home center prior to beginning my assignment with JPL. I furthermore understand that, upon arrival, I will consult with an ethics official located in the Chief Counsel’s Office for the NASA-JPL Management Office. If any question regarding my compliance regarding the federal ethics laws or other federal or NASA ethics requirements arises during my assignment, I will contact an ethics official located in the Chief Counsel’s Office for the NASA-JPL NASA Management Office (NMO) unless the issue relates to my official duties or other aspects or my relationship with my home center, in which case I will contact a NASA ethics official for my home center in coordination with an ethics official at the NASA-JPL NMO.

SELP Participant Name Here

Date

25
Assessment of the Nominee Against the Art and Science of Systems Engineering

<table>
<thead>
<tr>
<th>Rating Factor</th>
<th>Maximum Points Awarded</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Experience** | 40 | Has the nominee had the requisite experience in complexity and number of years to adequately prepare him/her to be successful in SELP? Has the nominee proven to be able to effectively translate the opportunities he/she has been provided into measurable results for the agency? Nominees will be rated on:
 - Relevant Past Experience: Type & number of years of demonstrated SE discipline knowledge and practical experience within area of expertise.
 - Participated in, or have an understanding and exposure to, phases of project life cycle development
 - Discipline and/or systems engineering competency
 - Major accomplishments (results achieved), including awards received |
| **Developmental Preparation** | 30 | How well is the candidate prepared to make maximum use of the SELP developmental opportunity? Does he/she have the requisite training and development necessary to be successful in the SELP? Is this the right program for this nominee at this time in his/her career? Nominees will be rated on:
 - Degree(s) and certificate(s) obtained
 - APPEL training completed
 - Other professional development
 - Leadership development, including agency-wide courses as applicable |
| Management Endorsement and Statement of Need (Center Nomination and Endorsement Memo. Additional information may also be available in Application Question #13.) | 25 | Does this center consider this nominee an individual who will be considered to lead programs and/or projects within the next two to three years in a systems engineering role? Does the center have a clear strategy for this individual that will effectively use the knowledge, skills, and abilities gained in SELP to support the achievement of the center goals? Is there a good plan to enhance NASA’s return-on investment? Nominees will be rated on:
• Center’s overall endorsement and assessment of the nominee’s systems engineering leadership capabilities
• Alignment of individual development needs with agency/center program needs
• Reentry strategy (How learning will be applied quickly?) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discretionary</td>
<td>5</td>
<td>At the discretion of the SELP Selection Panel member, up to 5 points can be added to the above factors based on the information provided. This allows the panel member the latitude to recognize any exceptional strength and/or to express a clear preference for one candidate over the others, despite the fact that the numerical weighting to that point may have been more or less equal.</td>
</tr>
<tr>
<td>Maximum Points Awarded</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
SUPervisor and Engineering Director’s SELP Application Checklist

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Is the nominee a full-time permanent civil servant, grade GS-13, 14, or 15 for NASA employees and Senior Systems Engineer at JPL?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Does the nominee have a Bachelor’s in engineering or Aerospace Technologist (AST) equivalent?</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Have you assessed the systems engineering knowledge, skills, and abilities the nominee will need to successfully run programs and projects 18 to 24 months from now; and the knowledge, skills, and experience the nominee needs to obtain to support these goals?</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Has the nominee had NASA-wide exposure and do they possess expanded systems engineering expertise, leadership skills, and experience?</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Has the nominee demonstrated the leadership behaviors and aptitude listed on Attachment A, Selection Criteria?</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Has the nominee graduated from their center’s systems engineering program, or can they demonstrate through their experience, training, and education that they have this knowledge and experience?</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Has the nominee taken the prerequisite APPEL systems engineering training, including Foundation of Aerospace at NASA, Project Management and Systems Engineering, and Fundamentals of Systems Engineering, or equivalent? If not, do they have the experience that shows they do not require this training to be successful in the program?</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Have you identified potential positions where the nominee’s training and experience can be applied upon return, and have you talked to your nominee about what they need to focus on developing during the program to meet these needs?</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Have you discussed with your center SELP Advocate the type of assignment that will help you meet your mission and your nominee’s developmental needs?</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Are you prepared to fully release your nominee from their current assignment(s) for 6 to 12 months?</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Have you reviewed the SELP Call Letter and are you aware of the center’s funding requirements?</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Have you reviewed the SELP Schedule, Attachment D, and confirmed the nominee can attend the required interviews and orientation?</td>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT E

Engineering Director and Center Director Nomination and endorsement Template

To: NASA Chief Engineer

FROM: Center Chief Engineer/Engineering Management Board Member

SUBJECT: Systems Engineering Leadership Program (SELP) Engineering Director and Center Director Nomination and Endorsement

(Center Name) is pleased to nominate the following candidate(s) to the Systems Engineering Leadership Program (SELP).

Nominee rank order and rationale:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Nominee</th>
<th>Nominee Development Path</th>
<th>Benefit to the Center/Reentry Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature of Center Chief Engineer/Engineering Management Board Member

Concurrence:

Name, Center Director Date
Example

To: NASA Chief Engineer

FROM: Center Chief Engineer/Engineering Management Board Member

SUBJECT: Systems Engineering Leadership Program (SELP) Engineering Director and Center Director Nomination and Endorsement

(Center Name) is pleased to nominate the following candidate(s) to the Systems Engineering Leadership Program (SELP).

Nominee rank order and rationale:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Nominee</th>
<th>Nominee Development Path</th>
<th>Benefit to the Center/Reentry Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jane Smith</td>
<td>Jane has 20 years experience in electrical engineering. She has been working in systems</td>
<td>The center is working more closely with international partners in implementing hardware and software in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>engineering for two years and has been assigned as lead on the XYZ program in the early</td>
<td>the XYZ project and needs to have systems engineers with an understanding of this phase and who can</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase of this project. Jane needs implementations experience. She has exhibited good</td>
<td>work cross-culturally. With the experience Jane gains in implementation and with advanced leadership</td>
</tr>
<tr>
<td></td>
<td></td>
<td>leadership skills and will need more advanced communication and political savvy skills to</td>
<td>skills, she will be able to support the center in fulfilling this critical need upon her return.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>move to the next level.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Edgar Sanchez</td>
<td>Edgar has a degree in systems engineering and full life cycle experience from his experience</td>
<td>The center will benefit great from this expanded perspective of our partners’ systems engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>at the center and his position in the Air Force. However, all of his experience is in</td>
<td>processes and procedures. Edgar is our second priority because knowledge and experience currently exists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>robotics. He is now working on projects that require more collaboration with human</td>
<td>to meet our immediate needs. However, the volume of work is increasing and several individuals currently</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spaceflight centers and university partners.</td>
<td>working in this area are expected to retire in the next four years. Upon return, Edgar will be well</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>positioned to serve as a lead systems engineer on one of our smaller projects expected to be funded in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>that time frame.</td>
</tr>
</tbody>
</table>

Signature of Center Chief Engineer/Engineering Management Board Member

Concurrence:

Name, Center Director Date